搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

限制电流对Ta/BaTiO3/Al2O3/ITO忆阻器的开关比和稳定性调控

何朝滔 卢羽 李秀林 陈鹏

引用本文:
Citation:

限制电流对Ta/BaTiO3/Al2O3/ITO忆阻器的开关比和稳定性调控

何朝滔, 卢羽, 李秀林, 陈鹏
cstr: 32037.14.aps.71.20211999

Facilitation of compliance current for resistive switching and stability of Ta/BaTiO3/Al2O3/ITO

He Chao-Tao, Lu Yu, Li Xiu-Lin, Chen Peng
cstr: 32037.14.aps.71.20211999
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 利用磁控溅射技术沉积了Ta/BaTiO3/Al2O3/ITO多层薄膜, 观察到该结构中的电阻开关现象受到限制电流的调控. 在限制电流大小为10–2 A时, 器件中的电阻开关现象达到最优. Ta/BaTiO3/Al2O3/ITO多层薄膜的电阻开关具有良好的可重复性和稳定性. 本文使用空间限制电流的传导模型对Ta/BaTiO3/Al2O3/ITO器件中受限制电流调控的电阻开关传导机理进行了解释.
    In this work, Ta/BaTiO3/Al2O3 multi-layer thin film is deposited on indium tin oxide substrates by using the magnetron sputtering technology. Obvious resistive switching performance can be observed by increasing the compliance current. Ohmic and space charge limited current conduction mechanisms are demonstrated in Ta/BaTiO3/Al2O3. The reproducible and stable resistive switching behaviors in Ta/BaTiO3/Al2O3/ITO device at Icc = 10–2 A are reported. The results show that no obvious degradation is found after 365 successive cycles tests.
      通信作者: 陈鹏, pchen@swu.edu.cn
      Corresponding author: Chen Peng, pchen@swu.edu.cn
    [1]

    Hu Z Q, Li Q, Li M Y, Wang Q W, Zhu Y D, Zhao X Z, Liu Y, Dong S X 2013 Appl. Phys. Lett. 102 102901Google Scholar

    [2]

    Zhou G D, Sun B, Hu X, Sun L, Zou Z, Xiao B, Qiu W, Wu B, Li J, Han J, Liao L, Xu C, Xiao G, Xiao L, Cheng J, Zheng S, Wang L, Song Q, Duan S 2021 Adv. Sci. 8 2003765Google Scholar

    [3]

    Sun B, Zhao W X, Liu Y H, Chen P 2015 Funct. Mater. Lett. 8 1550010Google Scholar

    [4]

    Wang J S, Liang D D, Wu L C, Li X P, Chen P 2018 Solid State Commun. 275 8Google Scholar

    [5]

    Lee J S, Lee S, Noh T W 2015 Appl. Phys. Rev. 2 031303Google Scholar

    [6]

    Lacaita A L, Wouters D J 2008 Phys. Stat. Sol. A 205 2281

    [7]

    Jeong D S, Thomas R, Katiyar R S, Scott J F, Kohlstedt H, A Petraru A, Hwang C S 2012 Rep. Prog. Phys. 75 076502Google Scholar

    [8]

    Kumar P, Maikap S, Ginnaram S, Qiu J T, Jana D, Chakrabarti S, Samanta S, S Singh S, Roy A, Jana S 2017 J. Electrochem. Soc. 164 B127Google Scholar

    [9]

    Petzold S, Zintler A, Eilhardt R, Piros E, Kaiser N, Sharath S U, Vogel T, Major Má, McKenna K P, Molina-Luna L, Alff L 2019 Adv. Electron. Mater. 5 1900484

    [10]

    Hsieh W K, Lam KT, Chang S J 2015 Mater. Sci. Semicon. Proc. 35 30Google Scholar

    [11]

    Scott J C, Bozano L D 2007 Adv. Mater. 19 1452Google Scholar

    [12]

    Lai R L, Wei M L, Wang J B, Zhou K, Qiu X Y 2021 J. Phys. D: Appl. Phys. 54 015101Google Scholar

    [13]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632Google Scholar

    [14]

    Guo T, Sun B, Ranjan S, Jiao Y, Wei L, Zhou Y N, Wu Y A 2020 ACS Appl. Mater. Inter. 12 54243Google Scholar

    [15]

    Sun B, Zhou G D, Guo T, Zhou Y N, Wu Y A 2020 Nano Energy 75 104938Google Scholar

    [16]

    Tsai T M, Lin C C, Chen W C, Wu C H, Yang C C, Tan Y F, Wu P Y, Huang H C, Zhang Y C, Sun L C, Chou S Y 2020 J. Alloy. Compd. 826 154126Google Scholar

    [17]

    Saylan S, Aldosari H M, Humood K, Jaoude M A, Ravaux F, Mohammad B 2020 Sci. Rep-UK 10 19541Google Scholar

    [18]

    Chen R, Hu W, Zou L, Xie W, Li B, Bao D 2014 Appl. Phys. Lett. 104 242111Google Scholar

    [19]

    Choi H H, Paik S H, Kim Y, Kim M, Kang Y S, Lee S S, Jho J Y, Park J H 2021 J. Ind. Eng. Chem. 94 233Google Scholar

    [20]

    Strachan J P, Strukov D B, Borghetti J, Yang J J, Medeiros-Ribeiro G, Williams R S 2011 Nanotechnology 22 254015Google Scholar

    [21]

    Tang Y, Zhang X, Lu Y, Chen P 2021 Functional Mater. Lett. 14 2150025Google Scholar

    [22]

    Liu C F, Tang X G, Wang L Q, Tang H, Jiang Y P, Liu Q X, Li W H, Tang Z H 2019 Nanomaterials 9 1124Google Scholar

    [23]

    Hu C, Wang Q, Bai S, Xu M, He D, Lyu D, Qi J 2017 Appl. Phys. Lett. 110 073501Google Scholar

    [24]

    Kim H D, Kim S, Yun M J 2018 J. Alloy. Compd. 742 822Google Scholar

    [25]

    Zhou G D, Duan S, Li P, et al. 2018 Adv. Electron. Mater. 1700567

    [26]

    Liu H C, Tang X G, Liu Q X, Jiang Y P, Li W H, Guo X B, Tang Z H 2020 Ceram. Int. 46 21196Google Scholar

    [27]

    Pan X, Shuai Y, Wu C, Luo W, Sun X, Zeng H, Guo H, Yuan Y, Zhou S, Böttger R, Cheng H, Zhang J, Zhang W, Schmidt H 2019 Solid State Ionics 334 1Google Scholar

    [28]

    Lü W, Li C, Zheng L, Xiao J, Lin W, Li Q, Wang X R, Huang Z, Zeng S, Han K, Zhou W, Zeng K, Chen J, Ariando, Cao W, Venkatesan T 2017 Adv. Mater. 29 1606165Google Scholar

    [29]

    Wei L J, Yuan Y, Wang J, Tu H Q, Gao H Q, You B, Du J 2017 Phys. Chem. Chem. Phys. 19 11864Google Scholar

    [30]

    Wang Y H, Zhao K H, Shi X L, Xie G L, Huang S Y, Zhang L W 2013 Appl. Phys. Lett. 103 031601Google Scholar

    [31]

    Razi P M, Gangineni R B 2019 Thin Solid Films 685 59Google Scholar

    [32]

    Wang G, Hu L, Xia Y, Li Q, Xu Q 2020 J. Magn. Magn. Mater. 493 165728Google Scholar

    [33]

    Chen Y T, Chang T C, Yang P C, Huang J J, Tseng H C, Huang H C, Yang J B, Chu A K, Gan D S, Tsai M J, Sze S M 2013 IEEE Electr. Device Lett. 34 226Google Scholar

    [34]

    Liu Y D, Hu C Z, Wang J J, Zhong N, Xiang P H, Duan C G 2020 J. Mater. Chem. C. 8 5815Google Scholar

    [35]

    Sharath S U, Vogel S, Molina-Luna L, Hildebrandt E, Wenger C, Kurian J, Duerrschnabel M, Niermann T, Niu G, Calka P, Lehmann M, Kleebe H J, Schroeder T, Alff L 2017 Adv. Funct. Mater. 27 1700432Google Scholar

  • 图 1  (a) Ta/BaTiO3/Al2O3/ITO器件XRD图, 插图为器件结构示意图; (b)器件截面示意图; (c) Ta电极表面SEM扫描图片, 插图为EDS原子百分比分析结果

    Fig. 1.  (a) XRD pattern of Ta/BaTiO3/Al2O3/ITO device, the inset shows the schematic diagram of the device; (b) SEM cross-sectional image of the device; (c) SEM image of Ta surface, the insert is the result of EDS analysis.

    图 2  (a) Ta/BaTiO3/Al2O3/ITO器件在Icc = 10–3, 5 × 10–3, 10–2 A下的电阻开关; (b) 50个器件中部分器件的I-V曲线图

    Fig. 2.  (a) The RS behaviors of the Ta/BaTiO3/Al2O3/ITO device with Icc = 10–3, 5 × 10–3, 10–2 A; (b) I-V characteristic curves for some cells of the fifty devices.

    图 3  Ta/BaTiO3/Ta器件的I-V特性, 插图为器件结构示意图

    Fig. 3.  The I-V curves measured for the Ta/BaTiO3/Ta device, the inset is schematic figure for stacked structures of the device.

    图 4  Icc = 10–2 A, Ta/BaTiO3/Al2O3/ITO器件相关特征的拟合结果 (a) I-V; (b) I-V2 (高偏压区域);

    Fig. 4.  Icc = 10–2 A, the fitting result for characteristics of the Ta/BaTiO3/Al2O3/ITO device: (a) I-V; (b) I-V2 (high-voltage region)

    图 5  Ta/BaTiO3/Al2O3/ITO器件中电阻开关的原理示意图

    Fig. 5.  The schematic diagrams of the RS in the Ta/BaTiO3/Al2O3/ITO device.

    图 6  (a) Icc = 10–2 A, Ta/BaTiO3/Al2O3/ITO器件连续循环100圈后LRS和HRS变化情况; (b) 器件循环365圈中RS现象的随机选取

    Fig. 6.  (a) The resistance evolution of HRS and LRS for the Ta/BaTiO3/Al2O3/ITO device with Icc = 10–2 A; (b) the continuous endurance measurements for the device.

    Baidu
  • [1]

    Hu Z Q, Li Q, Li M Y, Wang Q W, Zhu Y D, Zhao X Z, Liu Y, Dong S X 2013 Appl. Phys. Lett. 102 102901Google Scholar

    [2]

    Zhou G D, Sun B, Hu X, Sun L, Zou Z, Xiao B, Qiu W, Wu B, Li J, Han J, Liao L, Xu C, Xiao G, Xiao L, Cheng J, Zheng S, Wang L, Song Q, Duan S 2021 Adv. Sci. 8 2003765Google Scholar

    [3]

    Sun B, Zhao W X, Liu Y H, Chen P 2015 Funct. Mater. Lett. 8 1550010Google Scholar

    [4]

    Wang J S, Liang D D, Wu L C, Li X P, Chen P 2018 Solid State Commun. 275 8Google Scholar

    [5]

    Lee J S, Lee S, Noh T W 2015 Appl. Phys. Rev. 2 031303Google Scholar

    [6]

    Lacaita A L, Wouters D J 2008 Phys. Stat. Sol. A 205 2281

    [7]

    Jeong D S, Thomas R, Katiyar R S, Scott J F, Kohlstedt H, A Petraru A, Hwang C S 2012 Rep. Prog. Phys. 75 076502Google Scholar

    [8]

    Kumar P, Maikap S, Ginnaram S, Qiu J T, Jana D, Chakrabarti S, Samanta S, S Singh S, Roy A, Jana S 2017 J. Electrochem. Soc. 164 B127Google Scholar

    [9]

    Petzold S, Zintler A, Eilhardt R, Piros E, Kaiser N, Sharath S U, Vogel T, Major Má, McKenna K P, Molina-Luna L, Alff L 2019 Adv. Electron. Mater. 5 1900484

    [10]

    Hsieh W K, Lam KT, Chang S J 2015 Mater. Sci. Semicon. Proc. 35 30Google Scholar

    [11]

    Scott J C, Bozano L D 2007 Adv. Mater. 19 1452Google Scholar

    [12]

    Lai R L, Wei M L, Wang J B, Zhou K, Qiu X Y 2021 J. Phys. D: Appl. Phys. 54 015101Google Scholar

    [13]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632Google Scholar

    [14]

    Guo T, Sun B, Ranjan S, Jiao Y, Wei L, Zhou Y N, Wu Y A 2020 ACS Appl. Mater. Inter. 12 54243Google Scholar

    [15]

    Sun B, Zhou G D, Guo T, Zhou Y N, Wu Y A 2020 Nano Energy 75 104938Google Scholar

    [16]

    Tsai T M, Lin C C, Chen W C, Wu C H, Yang C C, Tan Y F, Wu P Y, Huang H C, Zhang Y C, Sun L C, Chou S Y 2020 J. Alloy. Compd. 826 154126Google Scholar

    [17]

    Saylan S, Aldosari H M, Humood K, Jaoude M A, Ravaux F, Mohammad B 2020 Sci. Rep-UK 10 19541Google Scholar

    [18]

    Chen R, Hu W, Zou L, Xie W, Li B, Bao D 2014 Appl. Phys. Lett. 104 242111Google Scholar

    [19]

    Choi H H, Paik S H, Kim Y, Kim M, Kang Y S, Lee S S, Jho J Y, Park J H 2021 J. Ind. Eng. Chem. 94 233Google Scholar

    [20]

    Strachan J P, Strukov D B, Borghetti J, Yang J J, Medeiros-Ribeiro G, Williams R S 2011 Nanotechnology 22 254015Google Scholar

    [21]

    Tang Y, Zhang X, Lu Y, Chen P 2021 Functional Mater. Lett. 14 2150025Google Scholar

    [22]

    Liu C F, Tang X G, Wang L Q, Tang H, Jiang Y P, Liu Q X, Li W H, Tang Z H 2019 Nanomaterials 9 1124Google Scholar

    [23]

    Hu C, Wang Q, Bai S, Xu M, He D, Lyu D, Qi J 2017 Appl. Phys. Lett. 110 073501Google Scholar

    [24]

    Kim H D, Kim S, Yun M J 2018 J. Alloy. Compd. 742 822Google Scholar

    [25]

    Zhou G D, Duan S, Li P, et al. 2018 Adv. Electron. Mater. 1700567

    [26]

    Liu H C, Tang X G, Liu Q X, Jiang Y P, Li W H, Guo X B, Tang Z H 2020 Ceram. Int. 46 21196Google Scholar

    [27]

    Pan X, Shuai Y, Wu C, Luo W, Sun X, Zeng H, Guo H, Yuan Y, Zhou S, Böttger R, Cheng H, Zhang J, Zhang W, Schmidt H 2019 Solid State Ionics 334 1Google Scholar

    [28]

    Lü W, Li C, Zheng L, Xiao J, Lin W, Li Q, Wang X R, Huang Z, Zeng S, Han K, Zhou W, Zeng K, Chen J, Ariando, Cao W, Venkatesan T 2017 Adv. Mater. 29 1606165Google Scholar

    [29]

    Wei L J, Yuan Y, Wang J, Tu H Q, Gao H Q, You B, Du J 2017 Phys. Chem. Chem. Phys. 19 11864Google Scholar

    [30]

    Wang Y H, Zhao K H, Shi X L, Xie G L, Huang S Y, Zhang L W 2013 Appl. Phys. Lett. 103 031601Google Scholar

    [31]

    Razi P M, Gangineni R B 2019 Thin Solid Films 685 59Google Scholar

    [32]

    Wang G, Hu L, Xia Y, Li Q, Xu Q 2020 J. Magn. Magn. Mater. 493 165728Google Scholar

    [33]

    Chen Y T, Chang T C, Yang P C, Huang J J, Tseng H C, Huang H C, Yang J B, Chu A K, Gan D S, Tsai M J, Sze S M 2013 IEEE Electr. Device Lett. 34 226Google Scholar

    [34]

    Liu Y D, Hu C Z, Wang J J, Zhong N, Xiang P H, Duan C G 2020 J. Mater. Chem. C. 8 5815Google Scholar

    [35]

    Sharath S U, Vogel S, Molina-Luna L, Hildebrandt E, Wenger C, Kurian J, Duerrschnabel M, Niermann T, Niu G, Calka P, Lehmann M, Kleebe H J, Schroeder T, Alff L 2017 Adv. Funct. Mater. 27 1700432Google Scholar

计量
  • 文章访问数:  7896
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-28
  • 修回日期:  2021-12-27
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回
Baidu
map