搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多尺度波致流非饱和孔隙介质波传播理论研究

李红星 张嘉辉 樊嘉伟 陶春辉 肖昆 黄光南 盛书中 宫猛

引用本文:
Citation:

多尺度波致流非饱和孔隙介质波传播理论研究

李红星, 张嘉辉, 樊嘉伟, 陶春辉, 肖昆, 黄光南, 盛书中, 宫猛
cstr: 32037.14.aps.71.20211463

Wave propagation theory of multi-scale wave induced flow in unsaturated porous medium

Li Hong-Xing, Zhang Jia-Hui, Fan Jia-Wei, Tao Chun-Hui, Xiao Kun, Huang Guang-Nan, Sheng Shu-Zhong, Gong Meng
cstr: 32037.14.aps.71.20211463
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 弹性波在非饱和孔隙介质中传播时, 孔隙流体会发生宏观Biot流、微观喷射流以及由于孔隙流体不同(气、液双相)导致的介(中)观流. 将非饱和孔隙介质等效为含液相孔隙流体的背景介质中嵌入含气相孔隙流体的包裹体, 在非饱和双重孔隙介质模型基础上, 引入微观喷射流, 建立了包含宏观、微观和介观三种尺度波至流的非饱和孔隙介质波传播方程. 数值分析表明该模型可以更好地预测更宽频带内的波速频散和衰减.
    When elastic waves propagate in an unsaturated porous medium, the macro Biot flow, micro squirt flow, and meso flow will occur. The unsaturated porous medium is equivalent to the inclusion of gas phase porous fluid embedded in the background medium containing liquid phase porous fluid. Based on the unsaturated dual porous medium model, the micro squirt flow is introduced, and the wave propagation equation of unsaturated porous medium including macro, micro and mesoscopic scale wave introduced flow is established. The numerical analysis indicates that the model in this paper can better predict the wave velocity dispersion and attenuation in a wider frequency band.
      通信作者: 李红星, lihongxingniran@163.com
    • 基金项目: 国家自然科学基金(批准号: 41764006)、江西省自然科学基金(批准号: 20202BABL201027)、江西省重点研发计划(批准号: 20212BBG73011)和东华理工大学核资源与环境国家重点实验室开放基金(批准号: Z1903)资助的课题.
      Corresponding author: Li Hong-Xing, lihongxingniran@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41764006), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20202BABL201027), the Key R&D Program of Jiangxi Province, China (Grant No. 20212BBG73011), and the Open Fund of State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, China (Grant No. Z1903).
    [1]

    Biot M A 1941 J. Appl. Phys. 12 155Google Scholar

    [2]

    Biot M A 1956 J. Acoust. Soc. Am. 28 168Google Scholar

    [3]

    Biot M A 1962 J. Acoust. Soc. Am. 34 1254Google Scholar

    [4]

    Mavko G M 1979 J. Geophys. Res. 84 4769Google Scholar

    [5]

    Mavko G M, Nur A 1979 Geophysics 44 161Google Scholar

    [6]

    White J E 1975 Geophysics 40 224Google Scholar

    [7]

    White J E 1975 J. Acoust. Soc. Am. 57 S30

    [8]

    Dutta N C 1979 Geophysics 44 1777Google Scholar

    [9]

    Dutta N C, Seriff A J 1979 Geophysics 24 1806

    [10]

    Johnson D L 2001 J. Acoust. Soc. Am. 110 682Google Scholar

    [11]

    Pride S R, Berryman J G 2003 Phys. Rev. E 68 036604Google Scholar

    [12]

    Dvorkin J, Nur A 1993 Geophysics 4 524

    [13]

    Li H X, Tao C H, Goloshubin G, Liu C, Shi S H, Huang G N, Zhang H, Zhang H, Zhang X F 2018 Acoust. Phys. 64 453Google Scholar

    [14]

    杨顶辉, 陈小宏 2001 石油地球物理勘探 36 146Google Scholar

    Yang D H, Chen X H 2001 Oil Geophys. Prosp. 36 146Google Scholar

    [15]

    Diallo M S, Appel E 2000 J. Appl. Geophys. 44 313Google Scholar

    [16]

    巴晶, Carcione J M, 曹宏, 杜启振, 袁振宇, 卢明辉 2012 地球 55 219Google Scholar

    Ba J, Carcione J M, Cao H, Du Q Z, Lu M H 2012 Chin. J. Geophys. 55 219Google Scholar

    [17]

    巴晶 2010 中国科学: 物理学, 力学, 天文学 40 1398

    Ba J 2010 Scientia Sinica: Phys, Mech & Astron 40 1398

    [18]

    Ba J, Nie J X, Cao H, Yang H Z 2008 Geophys. Res. Lett. 35 L04303

    [19]

    Ba J, Cao H, Yao F C, Yang N H 2008 Appl. Geophys. 5 261Google Scholar

    [20]

    Ba J, Carcione J M, Nie J X 2011 J. Geophys. Res. 116 B06202

    [21]

    Zhao Z Y, Yin X Y, Zong Z Y 2018 Ann. Geophys. 61 SE343

    [22]

    胡亚元 2021 哈尔滨工业大学学报 53 160Google Scholar

    Hu Y Y 2021 J. Harbin Inst. Technol. 53 160Google Scholar

    [23]

    Rayleigh L 1917 Philos. Mag. 34 94Google Scholar

    [24]

    Achenbach J D 1984 Wave Propagation in Elastic Solids (Amsterdam: Elsevier Science) pp61–62

  • 图 1  孔隙介质示意图 (a) 宏观尺度; (b) 介观尺度; (c) 微观尺度

    Fig. 1.  Schematic diagram of porous media: (a) Macro scale; (b) mesoscopic scale; (c) micro scale.

    图 2  介观尺度孔隙介质等效特征单元 (a) 三维示意图; (b) 二维示意图

    Fig. 2.  Equivalent characteristic unit of mesoscopic porous media: (a) Three-dimensional schematic diagram; (b) two-dimensional schematic diagram.

    图 3  不同孔隙介质模型波传播速度与衰减对比

    Fig. 3.  Comparison of wave propagation velocity and attenuation in porous media between different models.

    图 4  不同孔隙度BRS模型预测的波速与衰减

    Fig. 4.  Wave velocity and attenuation predicted by BRS model with different porosity.

    图 5  不同饱和度BRS模型预测的波速与衰减

    Fig. 5.  Wave velocity and attenuation predicted by BRS model with different saturation.

    图 6  不同介观尺度BRS模型预测的波速与衰减

    Fig. 6.  Wave velocity and attenuation predicted by BRS model with different saturation.

    图 7  不同渗透率BRS模型预测的波速与衰减

    Fig. 7.  Wave velocity and attenuation predicted by BRS model with different permeability

    表 1  非饱和孔隙介质模型参数

    Table 1.  Parameters of unsaturated porous media model.

    $ {\mu _{\text{b}}} $
    /GPa
    $ {K_{\text{s}}} $
    /GPa
    $ {K_{\text{b}}} $
    /GPa
    $ K_{\text{f}}^{(1)} $
    /GPa
    $ K_{\text{f}}^{(2)} $
    /MPa
    $ {\rho _{\text{s}}} $
    /(kg·m–3)
    $ \rho _{\text{f}}^{(1)} $
    /(kg·m–3)
    14.638162.250.126501000
    $ \rho _{\text{f}}^{(2)} $/(kg·m–3)$ \phi $
    $ \kappa $
    /mD
    $ {\eta _1} $
    /(Pa·s)
    $ {\eta _2} $
    /(Pa·s)
    $ {v_1} $
    $ {X_0} $
    /m
    10.151000.0010.000010.950.25
    下载: 导出CSV
    Baidu
  • [1]

    Biot M A 1941 J. Appl. Phys. 12 155Google Scholar

    [2]

    Biot M A 1956 J. Acoust. Soc. Am. 28 168Google Scholar

    [3]

    Biot M A 1962 J. Acoust. Soc. Am. 34 1254Google Scholar

    [4]

    Mavko G M 1979 J. Geophys. Res. 84 4769Google Scholar

    [5]

    Mavko G M, Nur A 1979 Geophysics 44 161Google Scholar

    [6]

    White J E 1975 Geophysics 40 224Google Scholar

    [7]

    White J E 1975 J. Acoust. Soc. Am. 57 S30

    [8]

    Dutta N C 1979 Geophysics 44 1777Google Scholar

    [9]

    Dutta N C, Seriff A J 1979 Geophysics 24 1806

    [10]

    Johnson D L 2001 J. Acoust. Soc. Am. 110 682Google Scholar

    [11]

    Pride S R, Berryman J G 2003 Phys. Rev. E 68 036604Google Scholar

    [12]

    Dvorkin J, Nur A 1993 Geophysics 4 524

    [13]

    Li H X, Tao C H, Goloshubin G, Liu C, Shi S H, Huang G N, Zhang H, Zhang H, Zhang X F 2018 Acoust. Phys. 64 453Google Scholar

    [14]

    杨顶辉, 陈小宏 2001 石油地球物理勘探 36 146Google Scholar

    Yang D H, Chen X H 2001 Oil Geophys. Prosp. 36 146Google Scholar

    [15]

    Diallo M S, Appel E 2000 J. Appl. Geophys. 44 313Google Scholar

    [16]

    巴晶, Carcione J M, 曹宏, 杜启振, 袁振宇, 卢明辉 2012 地球 55 219Google Scholar

    Ba J, Carcione J M, Cao H, Du Q Z, Lu M H 2012 Chin. J. Geophys. 55 219Google Scholar

    [17]

    巴晶 2010 中国科学: 物理学, 力学, 天文学 40 1398

    Ba J 2010 Scientia Sinica: Phys, Mech & Astron 40 1398

    [18]

    Ba J, Nie J X, Cao H, Yang H Z 2008 Geophys. Res. Lett. 35 L04303

    [19]

    Ba J, Cao H, Yao F C, Yang N H 2008 Appl. Geophys. 5 261Google Scholar

    [20]

    Ba J, Carcione J M, Nie J X 2011 J. Geophys. Res. 116 B06202

    [21]

    Zhao Z Y, Yin X Y, Zong Z Y 2018 Ann. Geophys. 61 SE343

    [22]

    胡亚元 2021 哈尔滨工业大学学报 53 160Google Scholar

    Hu Y Y 2021 J. Harbin Inst. Technol. 53 160Google Scholar

    [23]

    Rayleigh L 1917 Philos. Mag. 34 94Google Scholar

    [24]

    Achenbach J D 1984 Wave Propagation in Elastic Solids (Amsterdam: Elsevier Science) pp61–62

计量
  • 文章访问数:  7985
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-09
  • 修回日期:  2021-12-09
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回
Baidu
map