搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Au纳米颗粒负载WO3纳米花复合结构的二甲苯气敏性能

李东珂 贺冰彦 陈坤权 皮明雨 崔玉亭 张丁可

引用本文:
Citation:

Au纳米颗粒负载WO3纳米花复合结构的二甲苯气敏性能

李东珂, 贺冰彦, 陈坤权, 皮明雨, 崔玉亭, 张丁可

Xylene gas sensing performance of Au nanoparticlesloaded WO3 nanoflowers

Li Dong-Ke, He Bing-Yan, Chen Kun-Quan, Pi Ming-Yu, Cui Yu-Ting, Zhang Ding-Ke
cstr: 32037.14.aps.68.20190678
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 本文采用水热法成功制备了Au纳米颗粒负载的WO3纳米花材料, 并运用XRD, SEM, TEM等手段对其晶体结构和形貌进行了表征, 并详细研究了其对二甲苯的气敏性能. 首先对Au的浓度和气敏元件的工作温度进行了优化, 结果表明, 0.4 μl Au纳米颗粒负载的WO3对二甲苯的灵敏度最高, 最佳工作温度为250 ℃. 同纯WO3相比, Au纳米颗粒负载的WO3纳米花具有更快的响应/恢复速度和更高的目标气体选择性, 在100 ppm二甲苯中灵敏度达到了29.5. 此外, 检测限度可以低至5 ppm水平. 最后对气敏元件表面可能发生的氧化还原反应的机理进行了研究和讨论, 认为Au负载的WO3纳米花材料有望应用于二甲苯气体传感器.
    Pure and Au nanoparticles loaded WO3 nanoflowers are synthesized by the hydrothermal method.The structures and morphologies of the as-prepared products are characterized by X-ray diffraction (XRD),scanning electron microswcope (SEM), and transmission electron microscope (TEM). The gas sensing performance of the Au/WO3 sensor to xylene is investigated. The Au content and the operating temperature are first optimized. It is found that WO3 with 0.4 μL Au nanoparticles shows the highest sensitivity at an operating temperature of 250 ℃. Compared with pure WO3, Au(0.4)/WO3 possesses fast response/recovery speed and high target gas selectivity. Its sensitivity to 100 ppm xylene is 29.5. Meanwhile, the practical detection limitation is as low as 0.5 ppm. Finally, the mechanism of Au/WO3 gas sensing is also proposed and discussed. Au nanoparticles loaded WO3 nanoflowers are considered to be a promising sensing material for detecting xylene pollutants.
      通信作者: 张丁可, zhangdk@cqnu.edu.cn
    • 基金项目: 重庆高校创新团队建设计划(批准号: CXTDX201601016)资助的课题
      Corresponding author: Zhang Ding-Ke, zhangdk@cqnu.edu.cn
    • Funds: Project supported by the University Innovation Team Construction Plan of Chongqing, China (Grant No. CXTDX201601016)
    [1]

    Zhang Y M, Zhao J H, Du T F, Zhu Z Q, Zhang J, Liu Q J 2017 Sci. Rep. 7 1960Google Scholar

    [2]

    Zhang F J, Qu G, Mohammadi E, Mei J G, Diao Y 2017 Adv. Funct. Mater. 27 1701117Google Scholar

    [3]

    Wang S, Li Q W, Yu H M, Li J Z 2018 Non-Ferrous Min. Metall. 34 39

    [4]

    Gui Y H, Yang L L, Wang H Y, Li X M, Zhang H Z 2018 J. Synth. Cryst. 47 2115

    [5]

    Li F, Guo S J, Shen J L, Shen L, Sun D M, Wang B, Chen Y 2017 Sens. Actuators, B 238 364Google Scholar

    [6]

    Rong X R, Chen D L, Qu G P, Li T, Zhang R, Sun J 2018 Sens. Actuators, B 269 223Google Scholar

    [7]

    Li Y X, Chen N, Deng D Y, Xing X X, Xiao X C, Wang Y D 2017 Sens. Actuators, B 238 264Google Scholar

    [8]

    Yildiz A, Crisan D, Dragan N, Iftimie N, Florea D, Mardare D 2011 J. Mater. Sci.- Mater. Electron. 22 1420Google Scholar

    [9]

    Su P G, Liao W H 2017 Sens. Actuators, B 252 854Google Scholar

    [10]

    Zhao S K, Shen Y B, Zhou P F, Zhong X X, Han C, Zhao Q, Wei D Z 2019 Sens. Actuators, B 282 917Google Scholar

    [11]

    Su X T, Li Y N, Jian J K, Wang J D 2010 Mater. Res. Bull. 45 1960Google Scholar

    [12]

    Shi J C, Hu G J, Sun Y, Geng M, Wu J, Liu Y F, Ge M Y, Tao J C, Cao M, Dai N 2011 Sens. Actuators, B 156 820Google Scholar

    [13]

    Righettoni M, Tricoli A, Gass S, Schmid A, Amann A, Pratsinis S E 2012 Anal. Chim. Acta 738 69Google Scholar

    [14]

    Wang C, Sun R, Li X, Sun Y F, Sun P, Liu F M, Lu G Y 2014 Sens. Actuators, B 204 224Google Scholar

    [15]

    Lv C, Wang M H, Liu Z Q, Liu Y K, Shen X Q 2018 J. Synth. Cryst. 47 1237

    [16]

    Zhang H W, Wang Y Y, Zhu X G, Li Y, Cai W P 2019 Sens. Actuators, B 280 192Google Scholar

    [17]

    Kabcum S, Kotchasak N, Channei D, Tuantranont A, Wisitsoraat A, Phanichphant S, Liewhiran C 2017 Sens. Actuators, B 252 523Google Scholar

    [18]

    Ma J H, Ren Y, Zhou X R, Liu L L, Zhu Y H, Cheng X W, Xu P C, Li X X, Deng Y H, Zhao D Y 2018 Adv. Funct. Mater. 28 1705268Google Scholar

    [19]

    Comini E, Faglia G, Sberveglieri G, Pan Z W, Wang Z L 2002 Appl. Phys. Lett. 81 1869Google Scholar

    [20]

    Liu X H, Zhang J, Yang T L, Guo X Z, Wu S H, Wang S R 2011 Sens. Actuators, B 156 918Google Scholar

    [21]

    Vallejos S, Stoycheva T, Umek P, Navio C, Snyders R, Bittencourt C, Llobet E, Blackman C, Moniz S, Correig X 2011 Chem. Commun. 47 565Google Scholar

  • 图 1  制备气敏传感器的实物图 (a)陶瓷管; (b)加热丝; (c)制备好的传感器; (d)底座; (e)外罩套环

    Fig. 1.  The photos of the gas sensor: (a) Ceramic tube; (b) heating wire; (c) prepared sensor; (d) base; (e) cover.

    图 2  纯WO3和不同含量的Au负载的WO3复合体系的XRD图

    Fig. 2.  XRD pattern of pure WO3 and Au-loaded WO3 composites with different content of Au nanoparticles.

    图 3  复合体系Au(0.4)/WO3的SEM (a)低倍和(b)高倍照片及(c) TEM和(d) HRTEM照片

    Fig. 3.  SEM (a) low magnification, (b) high magnification, (c) TEM and (d) HRTEM photograph of Au(0.4)/WO3 composites.

    图 4  复合体系Au(0.4)/WO3的(a) W 4f和(b) Au 4f的X射线光电子能谱

    Fig. 4.  (a) W 4f and (b) Au 4f XPS spectra for Au(0.4)/WO3 composites.

    图 5  (a)在不同操作温度下各个气体传感器对50 ppm二甲苯的的响应曲线; (b)在最佳操作温度时, 各个气体传感器对不同浓度二甲苯的响应曲线

    Fig. 5.  (a) Response curves of various gas sensors exposed to 50 ppm xylene at different operating temperatures; (b) response curves of various gas sensors to different concentrations of xylene at optimal operating temperatures.

    图 6  250 ℃时Au(0.4)/WO3和纯WO3对50 ppm二甲苯的动态感应响应

    Fig. 6.  Dynamic response of Au(0.4)/WO3 and pure WO3 to 50 ppm xylene at 250 ℃.

    图 7  (a) Au(0.4)/WO3和纯WO3样品在250 ℃, 50 ppm不同气体中的灵敏度; (b) Au(0.4)/WO3对50 ppm二甲苯的稳定性

    Fig. 7.  (a) Sensitivity of Au(0.4)/WO3 and pure WO3 samples to 50 ppm different gases at 250 ℃; (b) the stability evaluation of Au(0.4)/WO3 to 50 ppm xylene.

    图 8  (a) WO3对二甲苯的气敏机理图; (b) Au/WO3的能带示意图

    Fig. 8.  (a) Gas-sensitive mechanism diagram of WO3; (b) the schematic diagram of the energy band in Au/WO3.

    Baidu
  • [1]

    Zhang Y M, Zhao J H, Du T F, Zhu Z Q, Zhang J, Liu Q J 2017 Sci. Rep. 7 1960Google Scholar

    [2]

    Zhang F J, Qu G, Mohammadi E, Mei J G, Diao Y 2017 Adv. Funct. Mater. 27 1701117Google Scholar

    [3]

    Wang S, Li Q W, Yu H M, Li J Z 2018 Non-Ferrous Min. Metall. 34 39

    [4]

    Gui Y H, Yang L L, Wang H Y, Li X M, Zhang H Z 2018 J. Synth. Cryst. 47 2115

    [5]

    Li F, Guo S J, Shen J L, Shen L, Sun D M, Wang B, Chen Y 2017 Sens. Actuators, B 238 364Google Scholar

    [6]

    Rong X R, Chen D L, Qu G P, Li T, Zhang R, Sun J 2018 Sens. Actuators, B 269 223Google Scholar

    [7]

    Li Y X, Chen N, Deng D Y, Xing X X, Xiao X C, Wang Y D 2017 Sens. Actuators, B 238 264Google Scholar

    [8]

    Yildiz A, Crisan D, Dragan N, Iftimie N, Florea D, Mardare D 2011 J. Mater. Sci.- Mater. Electron. 22 1420Google Scholar

    [9]

    Su P G, Liao W H 2017 Sens. Actuators, B 252 854Google Scholar

    [10]

    Zhao S K, Shen Y B, Zhou P F, Zhong X X, Han C, Zhao Q, Wei D Z 2019 Sens. Actuators, B 282 917Google Scholar

    [11]

    Su X T, Li Y N, Jian J K, Wang J D 2010 Mater. Res. Bull. 45 1960Google Scholar

    [12]

    Shi J C, Hu G J, Sun Y, Geng M, Wu J, Liu Y F, Ge M Y, Tao J C, Cao M, Dai N 2011 Sens. Actuators, B 156 820Google Scholar

    [13]

    Righettoni M, Tricoli A, Gass S, Schmid A, Amann A, Pratsinis S E 2012 Anal. Chim. Acta 738 69Google Scholar

    [14]

    Wang C, Sun R, Li X, Sun Y F, Sun P, Liu F M, Lu G Y 2014 Sens. Actuators, B 204 224Google Scholar

    [15]

    Lv C, Wang M H, Liu Z Q, Liu Y K, Shen X Q 2018 J. Synth. Cryst. 47 1237

    [16]

    Zhang H W, Wang Y Y, Zhu X G, Li Y, Cai W P 2019 Sens. Actuators, B 280 192Google Scholar

    [17]

    Kabcum S, Kotchasak N, Channei D, Tuantranont A, Wisitsoraat A, Phanichphant S, Liewhiran C 2017 Sens. Actuators, B 252 523Google Scholar

    [18]

    Ma J H, Ren Y, Zhou X R, Liu L L, Zhu Y H, Cheng X W, Xu P C, Li X X, Deng Y H, Zhao D Y 2018 Adv. Funct. Mater. 28 1705268Google Scholar

    [19]

    Comini E, Faglia G, Sberveglieri G, Pan Z W, Wang Z L 2002 Appl. Phys. Lett. 81 1869Google Scholar

    [20]

    Liu X H, Zhang J, Yang T L, Guo X Z, Wu S H, Wang S R 2011 Sens. Actuators, B 156 918Google Scholar

    [21]

    Vallejos S, Stoycheva T, Umek P, Navio C, Snyders R, Bittencourt C, Llobet E, Blackman C, Moniz S, Correig X 2011 Chem. Commun. 47 565Google Scholar

计量
  • 文章访问数:  14056
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-06
  • 修回日期:  2019-07-09
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回
Baidu
map