- 
				离轴积分腔输出光谱技术(off-axis integrated cavity output spectroscopy, OA-ICOS)是一种高灵敏度的激光光谱测量技术. 但由于使用密集的高阶模进行光谱探测, OA-ICOS输出信号强度较低, 使得探测灵敏度高度依赖于光源功率. 针对该问题, 本文引入光学再入射的方法, 使激光再次注入光腔, 以提高能量利用率和输出信号强度. 本文使用三维光追踪模拟软件, 设计再入射结构, 研究了影响信号增益的多个因素. 并搭建一套2 μm波段的再入射OA-ICOS装置, 开展了一系列研究实验. 实验数据表明: 再入射方法使OA-ICOS信号增强了8倍, 信噪比提升了4.6倍, 有效改善了探测灵敏度和光谱的吸收深度, 缓解了探测中遇到的信号功率低的问题, 为使用低功率光源和高反射率腔镜提供了有效的方法.Off-axis integrated cavity output spectroscopy (OA-ICOS) is a highly sensitive laser spectroscopy technique. However, due to the use of dense high-order modes for detection, OA-ICOS signal power is low, thus making the detection sensitivity highly dependent on the laser power. To this problem, we introduce an optical re-injection method to re-inject the laser back into the optical cavity again, improving the utilization of laser energy and the power of signal. In this paper, we use optical tracking software to design a re-injection structure, and study several factors affecting the signal gain. Then, we build a re-injection OA-ICOS device in the 2 μm band and also conduct a series of experimental researches. Our results show that the re-injection method enhances the OA-ICOS signal power 8 times and signal-to-noise ratio 4.6 times, which effectively improves the detection sensitivity and the absorption depth of the spectral signal, and alleviates the problem of low signal power in OA-ICOS detection.
- 
													Keywords:
													
 - reinjection /
 - off-axis integrated cavity /
 - mid-infrared /
 - high sensitivity
 
[1] 李志新 2015 博士学位论文 (太原: 山西大学)
Li Z X 2015 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)
[2] Nadeem F, Postma B R, Postma G, Cristescu S M, Mandon J, Harren F J M 2018 Appl. Opt. 57 154
Google Scholar
						[3] Leen J B, O'Keefe A 2014 Rev. Sci. Instrum. 85 093101
Google Scholar
						[4] O'Keefe A 1998 Chem. Phys. Lett. 293 331
Google Scholar
						[5] O'Keefe A, Scherer J J, Paul J B 1999 Chem. Phys. Lett. 307 343
Google Scholar
						[6] Li Y, Zhan L, Zhang J, Chen L 2015 Acta Oceanol. Sin. 34 34
Google Scholar
						[7] Mahesh P, Sreenivas G, Rao P V N, Dadhwal V K, Sai Krishna S V S, Mallikarjun K 2015 Int. J. Remote Sens. 36 5754
Google Scholar
						[8] Li L C, Duo L P, Gong D Y, Ma Y H, Zhang Z G, Wang Y H, Zhou D J, Jin Y Q 2017 Proc. SPIE 10254 102541E
Google Scholar
						[9] Tian C, Wang L, Novick K A 2016 Rapid Commun. Mass Sp. 30 2077
Google Scholar
						[10] Azhar M, Mandon J, Neerincx A H, Liu Z, Mink J, Merkus P J F M, Cristescu S M, Harren F J M 2017 Appl. Phys. B 123 268
Google Scholar
						[11] Miller K E, Bajzer Z, Hein S S, Phillips J E, Syed S, Wright A M, Cipriani G, Gibbons S J, Szurszewski J H, Farrugia G, Ordog T, Linden D R 2018 J. Neurogastroenterol. 30 e13333
Google Scholar
						[12] Bayrakli I 2018 Appl. Opt. 57 4039
Google Scholar
						[13] Nasir E F, Farooq A 2019 P. Combust. Inst. 37 1297
Google Scholar
						[14] Lang N, Macherius U, Zimmermann H, Glitsch S, Wiese M, Ropcke J, van Helden J H 2018 Sensors (Basel)
18 2058 
Google Scholar
						[15] Alquaity A B S, Kc U, Popov A, Farooq A 2017 Appl. Phys. B 123 280
Google Scholar
						[16] Sprenger M, Tetzlaff D, Soulsby C 2017 Rapid Commun. Mass Sp. 31 430
Google Scholar
						[17] Mering J A, Barker S L L 2018 Anal. Chem. 90 2852
Google Scholar
						[18] Gupta A, Singh P J, Gaikwad D Y, Udupa D V, Topkar A, Sahoo N K 2018 Rev. Sci. Instrum. 89 023110
Google Scholar
						[19] Paul J B, Lapson L, Anderson J G 2001 Appl. Opt. 40 4904
Google Scholar
						[20] Shen G, Chao X, Sun K 2018 Appl. Opt. 57 2947
Google Scholar
						[21] 赵卫雄 2008 博士学位论文 (合肥: 中国科学院安徽光学精密机械研究所)
Zhao W X 2008 Ph. D. Dissertation (Hefei: Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) (in Chinese)
[22] Nadeem F, Mandon J, Cristescu S M, Harren F J M 2018 Appl. Opt. 57 8536
Google Scholar
						[23] Centeno R, Mandon J, Cristescu S M, Harren F J M 2014 Sensors Actuat. B: Chem. 203 311
Google Scholar
						[24] Centeno R, Mandon J, Cristescu S M, Harren F J 2014 Opt. Exp. 22 27985
Google Scholar
						[25] 武东城 2014 硕士学位论文 (哈尔滨: 哈尔滨工业大学)
Wu D C 2014 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)
[26] Clouser B W, Sarkozy L, Moyer E J 2018 Appl. Opt. 57 6252
Google Scholar
						 - 
				
    
    
    
表 1 再入射结构中不同参数的影响
Table 1. Effects of different parameters in reinjection.
影响参数 光斑分布 Mre光斑数量上限 Mre光斑总数 Mre光斑密度 Mre光斑分布形状 Mout能量分布密度 约束入射角度 Mre曲率半径R √ √ √ Mre与Min间距L (再入射位置) √ √ √ XY方向入射光角度 √ √ √ 再入射孔离轴距离 √  - 
				
[1] 李志新 2015 博士学位论文 (太原: 山西大学)
Li Z X 2015 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)
[2] Nadeem F, Postma B R, Postma G, Cristescu S M, Mandon J, Harren F J M 2018 Appl. Opt. 57 154
Google Scholar
						[3] Leen J B, O'Keefe A 2014 Rev. Sci. Instrum. 85 093101
Google Scholar
						[4] O'Keefe A 1998 Chem. Phys. Lett. 293 331
Google Scholar
						[5] O'Keefe A, Scherer J J, Paul J B 1999 Chem. Phys. Lett. 307 343
Google Scholar
						[6] Li Y, Zhan L, Zhang J, Chen L 2015 Acta Oceanol. Sin. 34 34
Google Scholar
						[7] Mahesh P, Sreenivas G, Rao P V N, Dadhwal V K, Sai Krishna S V S, Mallikarjun K 2015 Int. J. Remote Sens. 36 5754
Google Scholar
						[8] Li L C, Duo L P, Gong D Y, Ma Y H, Zhang Z G, Wang Y H, Zhou D J, Jin Y Q 2017 Proc. SPIE 10254 102541E
Google Scholar
						[9] Tian C, Wang L, Novick K A 2016 Rapid Commun. Mass Sp. 30 2077
Google Scholar
						[10] Azhar M, Mandon J, Neerincx A H, Liu Z, Mink J, Merkus P J F M, Cristescu S M, Harren F J M 2017 Appl. Phys. B 123 268
Google Scholar
						[11] Miller K E, Bajzer Z, Hein S S, Phillips J E, Syed S, Wright A M, Cipriani G, Gibbons S J, Szurszewski J H, Farrugia G, Ordog T, Linden D R 2018 J. Neurogastroenterol. 30 e13333
Google Scholar
						[12] Bayrakli I 2018 Appl. Opt. 57 4039
Google Scholar
						[13] Nasir E F, Farooq A 2019 P. Combust. Inst. 37 1297
Google Scholar
						[14] Lang N, Macherius U, Zimmermann H, Glitsch S, Wiese M, Ropcke J, van Helden J H 2018 Sensors (Basel)
18 2058 
Google Scholar
						[15] Alquaity A B S, Kc U, Popov A, Farooq A 2017 Appl. Phys. B 123 280
Google Scholar
						[16] Sprenger M, Tetzlaff D, Soulsby C 2017 Rapid Commun. Mass Sp. 31 430
Google Scholar
						[17] Mering J A, Barker S L L 2018 Anal. Chem. 90 2852
Google Scholar
						[18] Gupta A, Singh P J, Gaikwad D Y, Udupa D V, Topkar A, Sahoo N K 2018 Rev. Sci. Instrum. 89 023110
Google Scholar
						[19] Paul J B, Lapson L, Anderson J G 2001 Appl. Opt. 40 4904
Google Scholar
						[20] Shen G, Chao X, Sun K 2018 Appl. Opt. 57 2947
Google Scholar
						[21] 赵卫雄 2008 博士学位论文 (合肥: 中国科学院安徽光学精密机械研究所)
Zhao W X 2008 Ph. D. Dissertation (Hefei: Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) (in Chinese)
[22] Nadeem F, Mandon J, Cristescu S M, Harren F J M 2018 Appl. Opt. 57 8536
Google Scholar
						[23] Centeno R, Mandon J, Cristescu S M, Harren F J M 2014 Sensors Actuat. B: Chem. 203 311
Google Scholar
						[24] Centeno R, Mandon J, Cristescu S M, Harren F J 2014 Opt. Exp. 22 27985
Google Scholar
						[25] 武东城 2014 硕士学位论文 (哈尔滨: 哈尔滨工业大学)
Wu D C 2014 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)
[26] Clouser B W, Sarkozy L, Moyer E J 2018 Appl. Opt. 57 6252
Google Scholar
						 
计量
- 文章访问数: 17733
 - PDF下载量: 199
 - 被引次数: 0
 


					
		        
	        
 
										





							
下载: