搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GaN HEMT界面工程对高温与动态偏压可靠性提升的作用机制研究

万紫嫣 张浩然 李霄 宁静 郝跃 张进成

引用本文:
Citation:

GaN HEMT界面工程对高温与动态偏压可靠性提升的作用机制研究

万紫嫣, 张浩然, 李霄, 宁静, 郝跃, 张进成

Research on the Mechanism of GaN HEMT Interface Engineering in Enhancing High-Temperature and Dynamic Bias Reliability

WAN Ziyan, ZHANG Haoran, LI Xiao, NING Jing, HAO Yue, ZHANG Jincheng
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • GaN外延生长中的高位错密度与界面缺陷会加速器件可靠性退化。尤其在高温条件下,深能级缺陷被激活、载流子散射增强,使电学与射频特性进一步恶化,成为制约GaN HEMT性能提升的关键瓶颈。为此,本研究在AlGaN/GaN异质结与衬底之间引入由范德华外延的BN缓冲层,并与传统外延结构进行了全面对比。在动态偏压条件下,该结构展现出显著的陷阱抑制能力,电流崩塌仅约9.2%,阈值电压漂移低至0.09 V,导通电阻与跨导基本保持稳定。在125℃高温测试中,器件仍表现出良好可靠性,电流崩塌约31%,阈值仅负漂约0.5 V,跨导衰减和导通电阻升幅均明显低于对照器件。在室温静态特性方面,该结构使导通电阻降低约40%,最大输出电流与跨导峰值显著提升。射频性能同样增强: fT由48GHz提升至90 GHz,fmax由114 GHz提升至133 GHz。结果表明,该界面优化策略可同时改善载流子输运、抑制陷阱效应并提升射频性能,为实现高频、高功率、高可靠性的GaN HEMT提供了有效路径。
    Traditional GaN materials inevitably exhibit lattice mismatch and differing thermal expansion coefficients during epitaxial growth, which often leads to a sharp increase in dislocation density and interface defects. This results in severe current collapse, degraded high-frequency performance, and reliability degradation in GaN HEMT devices, representing one of the key bottlenecks facing GaN-based HEMT RF devices. Van der Waals epitaxial bonding between BN and GaN effectively suppresses dislocations and relieves material stress, playing a crucial role in enhancing the high-frequency performance and reliability of GaN HEMT devices. This paper fabricates AlGaN/GaN HEMT devices grown on BN buffer layers using van der Waals epitaxy. Test results indicate that compared to conventional devices without a BN buffer layer, not only has the on-resistance been reduced by 40% and the peak transconductance increased by 54%, but the maximum output current has also been boosted by 67%. Under strong negative gate voltage stress conditions, its performance significantly outperforms conventional devices, with a current collapse ratio of only 9.2%. During the pulse width reduction from 200 ms to 100 μs, only a minimal drift of approximately 0.09 V occurs. Under high-temperature conditions (125°C), the current collapse ratio is only 31%, with smaller reductions in transconductance and negative drift of Vth. The overall degradation is significantly lower than that of conventional AlGaN/GaN HEMT devices based on epitaxial systems, demonstrating excellent high-temperature dynamic stability. Additionally, RF performance improved, with fT increasing from 48 GHz to 90 GHz and fmax rising from 114 GHz to 133 GHz. This work fully demonstrates this interface optimization strategy simultaneously enhances carrier transport, suppresses trap effects, and improves RF performance, providing an effective pathway for realizing high-frequency, high-power, and highly reliable GaN HEMTs.
  • [1]

    Shinohara K, Regan D C, Tang Y, Corrion A L, Brown D F, Wong J C, Robinson J F, Fung H H, Schmitz A, Oh T C, Kim S J, Chen P S, Nagele R G, Margomenos A D, Micovic M 2013 IEEE Trans. Electron. Dev. 60 2982

    [2]

    Chen K J, Häberlen O, Lidow A, Tsai C L, Ueda T, Uemoto Y, Wu Y F 2017 IEEE Trans. Electron. Dev. 64 779

    [3]

    Sehra K, Chanchal, Anand A, Kumari V, Reeta, Gupta M, Mishra M, Rawal D S, Saxena M 2023 IEEE Trans. Electron. Dev. 70 2612

    [4]

    Zhou Q, Jin Y, Shi Y Y, Mou J Y, Bao X, Chen B W, Zhang B 2015 IEEE Electron Device Lett. 36 660

    [5]

    Basler M, Reiner R, Moench S, Waltereit P, Quay R, Kallfass I, Ambacher O 2020 IEEE Electron Device Lett. 41 993

    [6]

    Tang Y, Shinohara K, Regan D, Andrea C, Brown D, Wong J, Schmitz A, Fung H, Kim S, Micovic M 2015 IEEE Electron Device Lett. 36 549

    [7]

    Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K, Parikh P 2004 IEEE Electron Device Lett. 25 117

    [8]

    Wang P F, Mi M H, An S R, Zhou Y W, Chen Z H, Zhu Q, Du X, Chen Y L, Zhang M, Hou B, Liu R Q, Ma X H, Hao Y 2024 IEEE Electron Device Lett. 45 1717

    [9]

    Wang Y J 2024 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [王彦君 2024 博士学位论文 (合肥:中国科学技术大学)]

    [10]

    Imura M, Nakano K, Fujimoto N, Okada N, Balakrishnan K, Iwaya M, Kamiyama S, Amano H, Akasaki I, Noro T, Takagi T, Bandoh A 2007 Jpn. J. Appl. Phys. 46 1458

    [11]

    Yang L Y, Huang W, Wang D, Zhang B Q, Zhang Y B, Zhang J Y, Chen T S, Ge W K, Wu S B, Shen B, Wang X Q 2023 ACS Appl. Electron. Mater 5 4786

    [12]

    Vetury R, Zhang N Q, Keller S, Mishra U K 2001 IEEE Trans. Electron. Dev. 48 560

    [13]

    Binari S C, Ikossi K, Roussos J A, Kruppa W, Park D, Dietrich H B, Koleske D D, Wickenden A E, Henry R L 2001 IEEE Trans. Electron. Dev. 48 465

    [14]

    Wu J S, Lee C C, Wu C H, Kao M L, Weng Y C, Yang C Y, Luc Q H, Lee C T, Ueda D, Chang E Y 2021 IEEE Electron Device Lett. 42 1268

    [15]

    Mahajan D, Khandelwal S 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL) Padua, Italy, June 25-28, 2018 p1

    [16]

    Lee H, Ryu H, Kang J Z, Zhu W J 2024 IEEE Electron Device Lett. 45 312

    [17]

    Zhang Y C, Huang S, Wei K, Zhang S, Wang X H, Zheng Y K, Liu G G, Chen X J, Li Y K, Liu X Y 2020 IEEE Electron Device Lett. 41 701

    [18]

    Xu S, Xu S R, Wang X H, Lu H, Liu X, Yun B X, Zhang Y C, Zhang T, Zhang J C, Hao Y 2023 Acta Phys. Sin. 72 19601 (in Chinese) [徐爽 许晟瑞 王心颢 卢灏 刘旭 贠博祥 张雅超 张涛 张进成 郝跃 2023 72 19601]

    [19]

    Zhang Z R, Fang Y L, Yin J Y, Guo Y M, Wang B, Wang Y G, Li J, Lu W L, Gao N, Liu P, Feng Z H 2018 Acta Phys. Sin. 67 076801 (in Chinese) [张志荣 房玉龙 尹甲运 郭艳敏 王波 王元刚 李佳 芦伟立 高楠 刘沛 冯志红 2018 67 076801]

    [20]

    Utama M I B, Zhang Q, Zhang J, Yuan Y W, Belarre F J, Arbiolbc J, Xiong Q H 2013 Nanoscale 5 3570

    [21]

    Wen Y, Ning J, Wu H D, Zhang H R, Cheng R Q, Yin L, Wang H, Zhang X L, Liu Y, Wang D, Hao Y, Zhang J C, He J 2025 Advanced materials 37(38) 2501916

    [22]

    Makimoto T, Kumakura K, Kobayashi Y, Akasaka T, Yamamoto H 2012 Appl. Phys. Express 5 072102

    [23]

    Wu J X, Li P X, Xu S R, Zhou X W, Tao H C, Yue W K, Wang Y L, Wu J T, Zhang Y C, Hao Y 2020 Materials 13 5118

    [24]

    Liu F, Yu Y, Zhang Y T, Rong X, Wang T, Zheng X T, Sheng B W, Yang L Y, Wei J Q, Wang X P, Li X B, Yang X L, Xu F J, Qin Z X, Zhang Z H, Shen B, Wang X Q 2020 Adv. Sci. 7 2000917

    [25]

    Zaiter A, Michon A, Nemoz M, Courville A, Vennéguès P, Ottapilakkal V, Vuong P, Sundaram S, Ougazzaden A, Brault J 2022 Materials 15 8602

    [26]

    Lv C W, Wang J J, Gu J B 2019 Acta Phys. Sin. 68 077102 (in Chinese) [吕常伟 王臣菊 顾建兵 2019 68 077102]

    [27]

    Zhang H R, Ning J, Li S Y, Shen X, Zhang Y N, Wan Z Y, Wang D, Hao Y, Zhang J C 2025 IEEE Electron Device Lett. 46 1693

    [28]

    Kobayashi Y, Kumakura K, Akasaka T, Makimoto T 2012 Nature 484 223

    [29]

    Hiroki M, Kumakura K, Kobayashi Y, Akasaka T, Makimoto T, Yamamoto H 2014 Appl. Phys. Lett. 105 1214

    [30]

    Paduano Q, Snure M, Siegel G, Thomson D, Look D 2016 J. Mater. Res. 31 2204

    [31]

    Glavin N R, Chabak K D, Heller E R, Moore E A, Prusnick T A, Maruyama B, Walker D E, Dorsey D L, Paduano Q, Snure M 2017 Adv. Mater. 29 1701838

    [32]

    Ravi L, Rather M A, Lin K L, Wu C T, Yu T Y, Lai K Y, Chyi J I 2023 ACS Appl. Electron. Mater. 5 146

    [33]

    Bai L, Ning J, Wu H D, Wang B Y, Wang D, Li Z H, HaoY, Zhang J C 2024 Scripta Materialia 248 116150

    [34]

    Kobayashi Y, Kumakura K, Akasaka T, Makimoto T 2012 Nature 484 223

    [35]

    Geim A K, Grigorieva I V 2013 Nature 499 419

    [36]

    Yin Y, Ren F, Wang Y Y, Liu Z Q, Ao J P, Liang M, Wei T B, Yuan G D, Ou H Y, Yan J C, Yi X Y, Wang J X, Li J M 2018 Materials 11 2464

    [37]

    Wu H D, Ning J, Zhang J C, Zeng Y, Jia Y Q, Zhao J L, Bai L, Wang Y B, Li S Y, Wang D, Hao Y 2023 Nanotechnology 34 295202

    [38]

    Hino T, Tomiya S, Miyajima T, Yanashima K, Hashimoto S, Ikeda M 2000 Appl. Phys. Lett. 76 3421

    [39]

    Hiroki M, Kumakura K, Kobayashi Y, Akasaka T, Makimoto T, Yamamoto H 2014 Appl. Phys. Lett. 105 193509

    [40]

    Ning J, Yang Z C, Wu H D, Dong X M, Zhang Y N, Chen Y F, Zhang X B,Wang D, Hao Y, Zhang J C 2025 Nature Communications 16 8144

    [41]

    Yang S, Liu S H, Lu Y Y, Liu C, Chen K J 2015 IEEE Trans. Electron. Dev. 62 1870

    [42]

    Chini A, Meneghesso G, Meneghini M, Fantini F, Verzellesi G, Patti A, Iucolano F 2016 IEEE Trans. Electron. Dev. 63 3473

    [43]

    Kanegae K, Fujikura H, Otoki Y, Konno T, Yoshida T, Horita M, Kimoto T, Suda J 2019 Appl. Phys. Lett. 115 012103

    [44]

    Yang S, Huang S, Wei J, Zheng Z Y, Wang Y R, He J B, Chen K J 2020 IEEE Electron Device Lett. 41 685

    [45]

    Alavijeh A S, Nunes L C, Pedro J C 2024 IEEE Asia-Pacific Microwave Conference (APMC) Bali, Indonesia, November 17-20, p43

    [46]

    Kohlhepp B, Wieczorek N, Geng X M, Böcker J, Dieckerhoff S 2025 Energy Conversion Congress & Expo Europe (ECCE Europe) Birmingham, United Kingdom, August 31 to September 4, p1

    [47]

    Subramani N K, Sahoo A K, Nallatamby J C, Sommet R, Quéré R 2016 12th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Lisbon, Portugal, June 27-30, p1

    [48]

    He J Q, Wang Q, Zhou G N, Li W M, Jiang Y, Qiao Z P, Tang C Y, Li G, Yu H Y 2022 IEEE Electron Device Lett. 43 529

    [49]

    Song C A, Yang W, Wang W J, Liao J L, Wu P, Jiang H X, Jiang S, Li B 2025 IEEE Electron Device Lett. 46 1289

  • [1] 张东楷, 胡晴, 郭玉龙, 翟颖, 刘栩珊, 王梓旭, 于国浩, 闫大为. 氢离子注入GaN HEMT栅极正向输运、退化与击穿研究.  , doi: 10.7498/aps.75.20251343
    [2] 王伟, 李金洋, 毛国培, 杨艳, 高志强, 马骢, 钟翔雨, 史青. 温度弱敏感光纤高温压力传感器.  , doi: 10.7498/aps.73.20231155
    [3] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋. WO3/β-Ga2O3异质结深紫外光电探测器的高温性能.  , doi: 10.7498/aps.72.20230638
    [4] 李志强, 谭晓瑜, 段忻磊, 张敬义, 杨家跃. 氮化硅微波高温介电函数深度学习分子动力学模拟.  , doi: 10.7498/aps.71.20221002
    [5] 李明珠, 蔡小五, 曾传滨, 李晓静, 李多力, 倪涛, 王娟娟, 韩郑生, 赵发展. 高温对MOSFET ESD防护器件维持特性的影响.  , doi: 10.7498/aps.71.20220172
    [6] 董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏. 面向高温介电储能应用的聚合物基电介质材料研究进展.  , doi: 10.7498/aps.69.20201006
    [7] 宋婷, 孙小伟, 魏小平, 欧阳玉花, 张春林, 郭鹏, 赵炜. 方镁石高压结构预测和高温结构稳定性研究.  , doi: 10.7498/aps.68.20190204
    [8] 张星, 张奕, 张建伟, 张建, 钟础宇, 黄佑文, 宁永强, 顾思洪, 王立军. 894nm高温垂直腔面发射激光器及其芯片级铯原子钟系统的应用.  , doi: 10.7498/aps.65.134204
    [9] 高英俊, 秦河林, 周文权, 邓芊芊, 罗志荣, 黄创高. 高温应变下的晶界湮没机理的晶体相场法研究.  , doi: 10.7498/aps.64.106105
    [10] 袁嵩, 段宝兴, 袁小宁, 马建冲, 李春来, 曹震, 郭海军, 杨银堂. 阶梯AlGaN外延新型Al0.25Ga0.75N/GaNHEMTs器件实验研究.  , doi: 10.7498/aps.64.237302
    [11] 韩勇, 龙新平, 郭向利. 一种简化维里型状态方程预测高温甲烷PVT关系.  , doi: 10.7498/aps.63.150505
    [12] 宋云飞, 于国洋, 殷合栋, 张明福, 刘玉强, 杨延强. 激光超声技术测量高温下蓝宝石单晶的弹性模量.  , doi: 10.7498/aps.61.064211
    [13] 余晨辉, 罗向东, 周文政, 罗庆洲, 刘培生. 新型双异质结高电子迁移率晶体管的电流崩塌效应研究.  , doi: 10.7498/aps.61.207301
    [14] 毛维, 杨翠, 郝跃, 张进成, 刘红侠, 马晓华, 王冲, 张金风, 杨林安, 许晟瑞, 毕志伟, 周洲, 杨凌, 王昊. 场板抑制GaN高电子迁移率晶体管电流崩塌的机理研究.  , doi: 10.7498/aps.60.017205
    [15] 李若凡, 杨瑞霞, 武一宾, 张志国, 许娜颖, 马永强. 用逆压电极化模型对AlGaN/GaN 高电子迁移率晶体管电流崩塌现象的研究.  , doi: 10.7498/aps.57.2450
    [16] 席光义, 任 凡, 郝智彪, 汪 莱, 李洪涛, 江 洋, 赵 维, 韩彦军, 罗 毅. AlGaN表面坑状缺陷及GaN缓冲层位错缺陷对AlGaN/GaN HEMT电流崩塌效应的影响.  , doi: 10.7498/aps.57.7238
    [17] 魏 巍, 林若兵, 冯 倩, 郝 跃. 场板结构AlGaN/GaN HEMT的电流崩塌机理.  , doi: 10.7498/aps.57.467
    [18] 宋晓书, 程新路, 杨向东, 令狐荣锋. 氧化亚氮3000—0200和1001—0110跃迁带在高温下的线强度.  , doi: 10.7498/aps.56.4428
    [19] 郝 跃, 韩新伟, 张进城, 张金凤. AlGaN/GaN HEMT器件直流扫描电流崩塌机理及其物理模型.  , doi: 10.7498/aps.55.3622
    [20] 李公平, 张梅玲. 铜团簇(n=55)结构及能量随温度演变的Monte Carlo 模拟研究.  , doi: 10.7498/aps.54.2873
计量
  • 文章访问数:  32
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2026-01-06

/

返回文章
返回
Baidu
map