搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铜基二轨道哈伯德模型中自旋条纹序与超导电性相互关系的量子蒙特卡洛研究

方世超 朱佳芮

引用本文:
Citation:

铜基二轨道哈伯德模型中自旋条纹序与超导电性相互关系的量子蒙特卡洛研究

方世超, 朱佳芮

Quantum Monte Carlo study of the interplay between spin stripe order and superconductivity in a two-orbital Hubbard model of cuprates

FANG Shichao, ZHU Jiarui
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 为澄清铜氧化物高温超导材料具有不同的超导转变温度的原因以及自旋条纹序和超导电性之间的关系,基于铜基二轨道哈伯德模型采用大尺度无偏差的约束路径量子蒙特卡洛方法研究了Cud3z2-r2轨道对LSCOHBCO两类典型的铜基超导体中的超导电性和自旋条纹序的影响。首先,利用不同类型的铜基超导材料的轨道能级差的差异,数值结果显示相比于LSCO超导材料,HBCO超导材料中的d波超导电子配对对称性的配对关联函数和有效配对关联函数的强度表现出更为显著的优势。此结果表明HBCO超导材料的超导转变温度高于LSCO超导材料的超导转变温度的原因与Cud3z2-r2轨道的作用有关。其次,通过考察LSCOHBCO两类超导材料中的自旋条纹序的形成情况,数值模拟结果显示LSCO体系的自旋条纹序呈现出相对较长的单个畴区,而HBCO体系的自旋条纹序呈现出周期性且具有多个畴区。此结果说明LSCO体系存在局域有序的自旋条纹序,HBCO体系存在非局域长程有序的自旋条纹序,更为重要的是由于HBCO超导材料中d波超导电子配对对称性的配对关联函数和有效配对关联函数在长程序上表现出明显的优势,这说明长程有序的自旋条纹序有利于提高材料的超导电性,即自旋条纹序和超导电性存在协同效应。
    To clarify the origin of the distinct superconducting transition temperatures in cuprate high-temperature superconductors and to elucidate the relationship between spin stripe order and superconductivity, we employ large-scale, unbiased constrained-path quantum Monte Carlo simulations based on a two-orbital Hubbard model for copper oxides. We investigate the influence of the Cu d3z2-r2 orbital on the superconducting properties and spin stripe order in two prototypical cuprates, LSCO and HBCO.
    First, within square lattice models of sizes 8 × 8 and 16 × 16, we examine the effect of the Cu d3z2-r2 orbital on superconductivity. By exploiting the differences in orbital energy-level separations among different cuprate materials, our numerical results demonstrate that, compared with LSCO, HBCO exhibits a significantly stronger enhancement in both the pairing correlation function and the effective pairing correlation function associated with d-wave superconducting symmetry. This result indicates that the higher superconducting transition temperature of HBCO relative to LSCO is closely related to the role of the Cu d3z2-r2 orbital.
    Second, considering that spin stripe order spontaneously breaks the rotational symmetry of the lattice and forms unidirectional, periodically modulated spin-density structures whose periodicity is generally incompatible with that of a square lattice, conventional periodic boundary conditions cannot accurately capture the intrinsic anisotropy of spin stripe order. To overcome this limitation, rectangular lattices are employed in our numerical simulations to describe the spin stripe configurations. This choice allows multiple stripe periods to be accommodated along the transverse direction, thereby faithfully capturing the spontaneously formed spin stripe structures in the electronic spin distribution and enabling a reliable analysis of their interplay with superconductivity. Based on this approach, we investigate the formation of spin stripe order in LSCO and HBCO using a 16 × 4 rectangular lattice. The numerical results show that LSCO develops relatively long single-domain spin stripes, whereas HBCO exhibits periodic spin stripe structures consisting of multiple domains. These findings indicate that LSCO hosts locally ordered spin stripes, while HBCO supports nonlocal, long-range ordered spin stripe order. More importantly, the pairing correlation and effective pairing correlation functions associated with d-wave superconductivity in HBCO retain a pronounced long-range enhancement, demonstrating that long-range ordered spin stripes are beneficial for enhancing superconductivity. This result reveals a cooperative interplay between spin stripe order and superconductivity.
    Taken together, these results not only provide insight into the origin of the distinct superconducting transition temperatures in cuprate high-temperature superconductors and the correlations between different ordered phases, but also demonstrate that the Cu d3z2-r2 orbital plays a crucial role in tuning superconductivity and spin fluctuations in cuprate materials. Our study thus offers a new theoretical perspective for exploring strongly correlated cuprate systems.
  • [1]

    Sigrist M, Ueda K 1991 Rev. Mod. Phys. 63 239

    [2]

    Norman M R 2011 Science 332 196

    [3]

    Scalapino D J 2012 Rev. Mod. Phys. 84 1383

    [4]

    Stewart G R 2017 Advances in Physics 66 75

    [5]

    Cooper L N 1956 Phys. Rev. 104 1189

    [6]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175

    [7]

    Tsuei C C, Kirtley J R 2000 Rev. Mod. Phys. 72 969

    [8]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473

    [9]

    Hu J P, 胡江平 2021 Acta Physica Sinica ( ) 70 017101. (in Chinese)

    [10]

    Hu J 2016 Science Bulletin 61 561

    [11]

    Maier T, Jarrell M, Pruschke T, Keller J 2000 Phys. Rev. Lett. 85 1524

    [12]

    Halboth C J, Metzner W 2000 Phys. Rev. Lett. 85 5162

    [13]

    Lichtenstein A I, Katsnelson M I 2000 Phys. Rev. B 62 R9283

    [14]

    Foley A, Verret S, Tremblay A M S, Sénéchal D 2019 Phys. Rev. B 99 184510

    [15]

    Guerrero M, Gubernatis J E, Zhang S 1998 Phys. Rev. B 57 11980

    [16]

    Kent P R C, Saha-Dasgupta T, Jepsen O, Andersen O K, Macridin A, Maier T A, Jarrell M, Schulthess T C 2008 Phys. Rev. B 78 035132

    [17]

    Vitali E, Shi H, Chiciak A, Zhang S 2019 Phys. Rev. B 99 165116

    [18]

    Cui Z H, Sun C, Ray U, Zheng B X, Sun Q, Chan G K L 2020 Phys. Rev. Res. 2 043259

    [19]

    Jorgensen J D, Schüttler H B, Hinks D G, Capone II D W, Zhang K, Brodsky M B, Scalapino D J 1987 Phys. Rev. Lett. 58 1024

    [20]

    Tarascon J M, Greene L H, McKinnon W R, Hull G W, Geballe T H 1987 Science 235 1373

    [21]

    Li Y, Balédent V, Barišić N, Cho Y, Fauqué B, Sidis Y, Yu G, Zhao X, Bourges P, Greven M 2008 Nature 455 372

    [22]

    Aksenov V L, Balagurov A M, Sikolenko V V, Simkin V G, Alyoshin V A, Antipov E V, Gippius A A, Mikhailova D A, Putilin S N, Bouree F 1997 Phys. Rev. B 55 3966

    [23]

    Li W M, Zhao J F, Cao L P, Hu Z, Huang Q Z, Wang X C, Liu Y, Zhao G Q, Zhang J, Liu Q Q, Yu R Z, Long Y W, Wu H, Lin H J, Chen C T, Li Z, Gong Z Z, Guguchia Z, Kim J S, Stewart G R, Uemura Y J, Uchida S, Jin C Q 2019 Proceedings of the National Academy of Sciences 116 12156

    [24]

    Fumagalli R, Nag A, Agrestini S, Garcia-Fernandez M, Walters A C, Betto D, Brookes N B, Braicovich L, Zhou K J, Ghiringhelli G, Moretti Sala M 2021 Physica C: Superconductivity and its Applications 581 1353810

    [25]

    Sakakibara H, Suzuki K, Usui H, Miyao S, Maruyama I, Kusakabe K, Arita R, Aoki H, Kuroki K 2014 Phys. Rev. B 89 224505

    [26]

    Kordyuk A A 2015 Low Temperature Physics 41 319

    [27]

    Valla T, Fedorov A V, Lee J, Davis J C, Gu G D 2006 Science 314 1914

    [28]

    Gerber S, Jang H, Nojiri H, Matsuzawa S, Yasumura H, Bonn D A, Liang R, Hardy W N, Islam Z, Mehta A, Song S, Sikorski M, Stefanescu D, Feng Y, Kivelson S A, Devereaux T P, Shen Z X, Kao C C, Lee W S, Zhu D, Lee J S 2015 Science 350 949

    [29]

    Comin R, Damascelli A 2016 Annual Review of Condensed Matter Physics 7 369

    [30]

    Parker C V, Aynajian P, da Silva Neto E H, Pushp A, Ono S, Wen J, Xu Z, Gu G, Yazdani A 2010 Nature 468 677

    [31]

    He R H, Hashimoto M, Karapetyan H, Koralek J D, Hinton J P, Testaud J P, Nathan V, Yoshida Y, Yao H, Tanaka K, Meevasana W, Moore R G, Lu D H, Mo S K, Ishikado M, Eisaki H, Hussain Z, Devereaux T P, Kivelson S A, Orenstein J, Kapitulnik A, Shen Z X 2011 Science 331 1579

    [32]

    Wang Z, Xu J, Li H, Fan S, Yang H, Wen H H 2025 Phys. Rev. B 112 064502

    [33]

    Ando Y, Segawa K, Komiya S, Lavrov A N 2002 Phys. Rev. Lett. 88 137005

    [34]

    Daou R, Chang J, LeBoeuf D, Cyr-Choiniere O, Laliberté F, Doiron-Leyraud N, Ramshaw B J, Liang R, Bonn D A, Hardy W N, Taillefer L 2010 Nature 463 519

    [35]

    Hinkov V, Haug D, Fauqué B, Bourges P, Sidis Y, Ivanov A, Bernhard C, Lin C T, Keimer B 2008 Science 319 597

    [36]

    Vojta M 2009 Advances in Physics 58 699

    [37]

    Poilblanc D, Rice T M 1989 Phys. Rev. B 39 9749

    [38]

    Zaanen J, Gunnarsson O 1989 Phys. Rev. B 40 7391

    [39]

    White S R, Scalapino D J 2003 Phys. Rev. Lett. 91 136403

    [40]

    Hager G, Wellein G, Jeckelmann E, Fehske H 2005 Phys. Rev. B 71 075108

    [41]

    Corboz P, Rice T M, Troyer M 2014 Phys. Rev. Lett. 113 046402

    [42]

    Chang C C, Zhang S 2010 Phys. Rev. Lett. 104 116402

    [43]

    Zheng B X, Chung C M, Corboz P, Ehlers G, Qin M P, Noack R M, Shi H, White S R, Zhang S, Chan G K L 2017 Science 358 1155

    [44]

    Huang E W, Mendl C B, Liu S, Johnston S, Jiang H C, Moritz B, Devereaux T P 2017 Science 358 1161

    [45]

    Huang E W, Mendl C B, Jiang H C, Moritz B, Devereaux T P 2018 npj Quantum Materials 3 22

    [46]

    Sakakibara H, Usui H, Kuroki K, Arita R, Aoki H 2010 Phys. Rev. Lett. 105 057003

    [47]

    Sakakibara H, Usui H, Kuroki K, Arita R, Aoki H 2012 Phys. Rev. B 85 064501

    [48]

    Maier T, Berlijn T, Scalapino D J 2019 Phys. Rev. B 99 224515

    [49]

    Jiang K, Wu X, Hu J, Wang Z 2018 Phys. Rev. Lett. 121 227002

    [50]

    Ying T, Wessel S 2018 Phys. Rev. B 97 075127

    [51]

    Fang S C, Liu G K, Lin H Q, Huang Z B 2019 Phys. Rev. B 100 115135

    [52]

    Fang S C, Zheng X J, Lin H Q, Huang Z B 2020 Journal of Physics: Condensed Matter 33 025601

    [53]

    Trotter H F 1959 Proceedings of the American Mathematical Society 10 545

    [54]

    Suzuki M 1976 Communications in Mathematical Physics 51 183

    [55]

    Hirsch J E 1983 Phys. Rev. B 28 4059

    [56]

    Zhang S, Carlson J, Gubernatis J E 1997 Phys. Rev. B 55 7464

    [57]

    Liu G, Kaushal N, Li S, Bishop C B, Wang Y, Johnston S, Alvarez G, Moreo A, Dagotto E 2016 Phys. Rev. E 93 063313

    [58]

    Shi H, Zhang S 2013 Phys. Rev. B 88 125132

    [59]

    Shi H, Jiménez-Hoyos C A, Rodríguez-Guzmán R, Scuseria G E, Zhang S 2014 Phys. Rev. B 89 125129

    [60]

    Vitali E, Shi H, Qin M, Zhang S 2016 Phys. Rev. B 94 085140

    [61]

    Fang S C, Liao X Y, 方世超, 廖心怡 2025 Acta Physica Sinica ( ) 74 120201. (in Chinese)

    [62]

    Kondo T, Khasanov R, Takeuchi T, Schmalian J, Kaminski A 2009 Nature 457 296

    [63]

    Chang J, Blackburn E, Holmes A T, Christensen N B, Larsen J, Mesot J, Liang R, Bonn D A, Hardy W N, Watenphul A, v Zimmermann M, Forgan E M, Hayden S M 2012 Nature Physics 8 871

    [64]

    Wang Y, Agterberg D F, Chubukov A 2015 Phys. Rev. B 91 115103

    [65]

    Chan C 2016 Phys. Rev. B 93 184514

    [66]

    Chakraborty D, Grandadam M, Hamidian M H, Davis J C S, Sidis Y, Pépin C 2019 Phys. Rev. B 100 224511

    [67]

    Agterberg D F, Davis J S, Edkins S D, Fradkin E, Van Harlingen D J, Kivelson S A, Lee P A, Radzihovsky L, Tranquada J M, Wang Y 2020 Annual Review of Condensed Matter Physics 11 231

    [68]

    Imada M 2021 Journal of the Physical Society of Japan 90 111009

    [69]

    Tranquada J M, Sternlieb B J, Axe J D, Nakamura Y, Uchida S 1995 Nature 375 561

    [70]

    Wu T, Mayaffre H, Krämer S, Horvatić M, Berthier C, Hardy W N, Liang R, Bonn D A, Julien M H 2011 Nature 477 191

    [71]

    Tranquada J M, Woo H, Perring T G, Goka H, Gu G D, Xu G, Fujita M, Yamada K 2004 Nature 429 534

    [72]

    Hayden S M, Mook H A, Dai P, Perring T G, Dogan F 2004 Nature 429 531

  • [1] 方世超, 廖心怡. 扭角双层石墨烯中磁性和手性d + id超导态的量子蒙特卡罗研究.  , doi: 10.7498/aps.74.20250305
    [2] 郑智勇, 陈立杰, 向吕, 王鹤, 王一平. 一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制.  , doi: 10.7498/aps.72.20231321
    [3] 唐杰, 石磊, 魏家华, 于惠存, 薛阳, 武天雄. 基于d维GHZ态的多方量子密钥协商.  , doi: 10.7498/aps.69.20200799
    [4] 焦敬品, 李海平, 何存富, 吴斌, 薛岩. 基于反转路径差信号的兰姆波成像方法.  , doi: 10.7498/aps.68.20190101
    [5] 董晓莉, 金魁, 袁洁, 周放, 张广铭, 赵忠贤. FeSe基超导单晶与薄膜研究新进展:自旋向列序、电子相分离及高临界参数.  , doi: 10.7498/aps.67.20181638
    [6] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学.  , doi: 10.7498/aps.67.20181543
    [7] 林呈, 张华堂, 盛志浩, 余显环, 刘鹏, 徐竟文, 宋晓红, 胡师林, 陈京, 杨玮枫. 用推广的量子轨迹蒙特卡罗方法研究强场光电子全息.  , doi: 10.7498/aps.65.223207
    [8] 陈俊, 於亚飞, 张智明. 利用信息流方法优化多激发自旋链中的量子态传输.  , doi: 10.7498/aps.64.160305
    [9] 金霞, 董正超, 梁志鹏, 仲崇贵. 磁性d波超导/铁磁/磁性d波超导结中的约瑟夫森效应.  , doi: 10.7498/aps.62.047401
    [10] 王桂英, 郭焕银, 毛强, 杨刚, 彭振生. V替代Mn对La0.45Ca0.55MnO3电荷有序相及自旋玻璃态的影响.  , doi: 10.7498/aps.59.8883
    [11] 赵杏文, 程新路, 张红. 液态4He系统对关联函数的路径积分蒙特卡罗模拟.  , doi: 10.7498/aps.59.482
    [12] 董正超. 磁性半导体/磁性d波超导结中的自旋极化输运.  , doi: 10.7498/aps.57.5937
    [13] 李晓薇, 刘淑静. 正常金属/自旋三重态p波超导体结隧道谱的奇异性.  , doi: 10.7498/aps.55.834
    [14] 李晓薇. 铁磁超导态/绝缘层/自旋三重态p波超导体结的直流Josephson电流.  , doi: 10.7498/aps.55.6637
    [15] 杨子元. 晶体材料中3d2态离子自旋哈密顿参量的微观起源.  , doi: 10.7498/aps.53.1981
    [16] 董正超. 铁磁-绝缘层-铁磁-d波超导结中的量子干涉效应对微分电导与散粒噪声的影响.  , doi: 10.7498/aps.51.894
    [17] 董正超. 铁磁-d波超导结中的粗糙界面散射和自旋反转效应对隧道谱的影响.  , doi: 10.7498/aps.50.1779
    [18] 董正超. d波超导体NIS结中的时间反演对称态的破缺与准粒子寿命效应.  , doi: 10.7498/aps.49.339
    [19] 杜胜望, 戴远东, 王世光. 用射频超导量子干涉器件测量高温超导体序参量的位相.  , doi: 10.7498/aps.48.2364
    [20] 董正超. 正常金属-铁磁绝缘层-d波超导结中的磁散射对量子输运的影响.  , doi: 10.7498/aps.48.2357
计量
  • 文章访问数:  61
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2026-01-05

/

返回文章
返回
Baidu
map