-
基于各向异性超材料,设计并制备了一种工作于太赫兹波段的宽带高效率的透射式线性偏振转换器。通过对其感应的表面电流分析,阐明了实现高效宽带转换的物理机制主要归因于三种不同谐振模式之间的协同作用。结合偏振态分析(包括偏振旋转角和椭偏角的计算)进一步验证了其宽带高效率的线性偏振转换能力。利用太赫兹时域光谱系统对所设计的偏振器件性能进行测试,实验结果表明,在0.53~1.77 THz范围内,该偏振转换器可将入射太赫兹波的线偏振方向旋转90°,偏振转换效率高于92%。另外,该透射式偏振转换器采用简单的双层金属结构,易于加工并集成到太赫兹通信系统的偏振器件中,该研究为发展高性能太赫兹透射式偏振转换器件提供了有效方案,对推进太赫兹通讯器件的实用化具有重要意义。Terahertz (THz) polarization converters are essential components for advancing THz applications in imaging, sensing, and high-speed communications. However, achieving both broad bandwidth and high conversion efficiency remains a significant challenge. In this work, we propose, fabricate, and experimentally validate a transmissive linear polarization converter (TTPC) operating in the terahertz band, utilizing a bilayer metallic metamaterial structure. The device consists of a top-layer metasurface with a square patch and split-ring resonators and a bottom-layer metallic grating, separated by a polyimide substrate. Through full-wave electromagnetic simulations and surface current analysis, we reveal that the high-performance broadband polarization conversion arises from the synergistic interaction among three distinct resonance modes. Stokes parameter analysis further confirms that the polarization rotation angle remains stable at approximately 90° with near-linear output across the operational band. Experimental characterization using a terahertz time-domain spectroscopy (THz-TDS) system demonstrates that the device achieves a polarization conversion ratio (PCR) exceeding 92% over a broad frequency range of 0.53–1.77 THz, corresponding to a relative bandwidth of 108%. The measured insertion loss varies between 5.5 dB and 12 dB within the operating band, which is attributed to ohmic loss, dielectric absorption, and resonant energy dissipation. Despite these losses, the converter maintains high polarization purity and practical utility. With a compact and fabrication-friendly architecture, the proposed TTPC offers a viable route toward high-performance, broadband polarization control in terahertz systems, paving the way for its integration into next-generation THz communication and imaging devices.
-
Keywords:
- terahertz /
- metamaterial /
- polarization converter /
- wideband
-
[1] Seo M, Park H R 2020 Adv. Opt. Mater. 8 1900662
[2] Kang Y Q, Xi H Y, Meng T H, Lin Q W, Dong L J 2022 Results Phys. 37 105514.
[3] Jin J S, Ma C J, Zhang Y, Zhang Y B, Bao S Q, Li M, Li D M, Liu M, Liu Q Z, Zhang Y X, 2023 Acta Phys. Sin. 72 08202 (in Chinese) [金嘉升 马成举 张垚 张跃斌 鲍士仟 李咪 李东明 刘洺 刘芊震 张贻歆 2023 72 08202]
[4] Tonouchi M 2007 Nat. Photonics 1 97.
[5] Yang X W, Zhao F 2022 Acta Opt. Sin. 42 0806002.
[6] Wang Y Y, Wang G Q, Xu D G, Jiang B Z, Ge M L, Wu L, Yang C Y, Mu N, Wang S, Chang C, Chen T, Feng H, Yao J Q 2022 Acta Opt. Sin. 42 1017001.
[7] Shen Y C, Lo T, Taday P F, Cole B E, Tribe W R, Kemp M C 2005 Appl. Phys. Lett. 86 241116.
[8] Herrmann M, Tabata H, Kawai T, 2025 Opt. Express 13, 5205-5215.
[9] Xue K, Li Q, Li Y D, Wang Q, Opt. Lett. 2012 37, 3228-3230.
[10] Wang H, Ling F, Zhang B 2020 Opt. Express 28 36316.
[11] Cai H 2018 Adv. Opt. Mater. 6 1800257
[12] Zhu H L, Zhang Y, Ye L F, Li Y K, Xu Y H, Xu R 2020 Opt. Express 28 414039.
[13] Hu F R, Wang H, Zhang X W, Xu X L, Jiang W Y, Rong Q, Zhao S, Jiang M Z, Zhang W T 2019 IEEE J. Sel. Top. Quantum Electron. 25 4700207.
[14] Shen Y C, Lo T, Taday P F, Cole B E, Tribe W R, Kemp M C 2005 Appl. Phys. Lett. 86 241116.
[15] Gao C Y, Kang Y Q, Meng T H, Zhao G Z, Hu H J, Phys. Scr. 2025 100, 075563.
[16] Gu S Y, Wang C, Gao Z Y, Gao L, Drolgar, Gao F, Wang S J, Xu Y D. 2025 Chin. Phys. Lett. 42(9), 090401.
[17] Zhang G Z, Zhou M M, Xiang H, Han D Z. 2025 Chin. Phys. B 34,084201.
[18] Chen Y, Cao W H, Li J Q, Zhang M Z, Du X Y, Gao D S, Li P L. 2025 Chin. Phys. B 34, 044205.
[19] Grady N K, Heyes J E, Roy D, Yong Z, Reiten M T, Azad A K, 2013 Science 340, 1304-1307.
[20] Liu W W, Chen S Q, Li Z C, Cheng H, Yu P, Li J X, 2015 Opt. Lett. 40, 3185-3188.
[21] Zhou Q G, Li Y, Zhen Y Z, Yao N J, Huang Z M, 2023 Chin. Phys. B 32, 024201.
[22] Jing X F, Gui X C, Zhou P W, and Hong Z, 2018 J. Lightwave Technol. 36, 2322-2327.
[23] Lu T, Qiu P, Lian J, Zhang D, and Zhuang S, 2019 Opt. Mater. 94, 109230.
[24] Al-Naib I A I, Jansen C, Born N, Koch M, 2011 Appl. Phys. Lett. 98, 091107.
[25] Cheng Z Z, and Cheng Y Z, 2019 Opt. Commun. 435, 178-182.
计量
- 文章访问数: 12
- PDF下载量: 0
- 被引次数: 0








下载: