搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛酸铋钠高压下结构演化与相变行为研究

王润基 房雷鸣 何瑞琦 冷浩杰 刘勇波 陈喜平 谢雷 冯秋 孙安苇 熊政伟 高志鹏

引用本文:
Citation:

钛酸铋钠高压下结构演化与相变行为研究

王润基, 房雷鸣, 何瑞琦, 冷浩杰, 刘勇波, 陈喜平, 谢雷, 冯秋, 孙安苇, 熊政伟, 高志鹏

High-pressure structural evolution and phase transitions in Na0.5Bi0.5TiO3

WANG Runji, FANG Leiming, HE Ruiqi, LENG Haojie, LIU Yongbo, CHEN Xiping, XIE Lei, FENG Qiu, SUN Anwei, XIONG Zhengwei, GAO Zhipeng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 弛豫铁电体钛酸铋钠(Na0.5Bi0.5TiO3,NBT)具有优异的铁电性能,被广泛认为是极具应用前景的无铅铁电材料。深入阐明其在高压下的结构演化规律与相变机理,对于推动这类环境友好型铁电材料的应用至关重要。本研究结合原位高压中子衍射实验与第一性原理计算,研究了NBT在高压下的结构演化规律。高压中子衍射实验结果表明,NBT的常压相R3c相和高压相Pnma相的共存压力区间为1.1-4.6 GPa,其体积模量分别为89.3 GPa和108.6 GPa。通过分析压力诱导的微观结构演变,本研究阐明了NBT高压相与常压相在微观结构特征上的差异及对体积模量的影响,建立了高压下NBT的微观结构响应与宏观物理性能的内在联系。获得的相关结论为无铅压电材料的高压性能调控提供了重要的实验依据与参考。
    Relaxor ferroelectric sodium bismuth titanate (Na0.5Bi0.5TiO3, NBT) exhibits outstanding ferroelectric characteristics and is widely recognized as a highly promising lead-free ferroelectric material. In order to further promote the application of such environmentally friendly ferroelectric materials, it is crucial to gain a comprehensive understanding of their structural evolution and phase transition mechanisms under high pressure. This study investigates the structural evolution of NBT under hydrostatic pressure up to 6.8 GPa by integrating in situ high-pressure neutron diffraction experiments with first-principles calculations. Based on high-pressure neutron diffraction experiments conducted at the China Mianyang Research Reactor (CMRR), Rietveld refinement analysis determined the phase transition from the ambient-pressure R3c phase to the high-pressure Pnma phase in NBT, with a coexistence pressure range of 1.1–4.6 GPa. The bulk modulus of the high-pressure phase Pnma was experimentally determined for the first time, with a value of 108.6 GPa. First-principles calculations further corroborated the thermodynamic tendency for the pressure-induced phase transition from R3c to Pnma and yielded a bulk modulus in close agreement with the experimental value. By correlating with the experimentally obtained trends of the internal [TiO6] oxygen octahedral structural changes under high pressure in both phases, this study demonstrates that the difference in their macroscopic compressibility originates from the significantly higher pressure sensitivity of the oxygen octahedral distortion degree in the R3c phase compared to the Pnma phase. This relatively softer internal microstructure results in a lower bulk modulus than that of the Pnma phase. By providing a detailed analysis of the pressure-induced phase transition and microstructural evolution, this study clarifies the relationship between the microscopic structural features of the high-pressure and ambient-pressure phases of NBT and their influence on macroscopic mechanical properties, thereby establishing a fundamental connection between microscopic structural responses and bulk physical behavior under high-pressure conditions. These findings provide crucial experimental data and theoretical support for further enhancing the high-pressure performance and applications of lead-free ferroelectric materials.
  • [1]

    Leijtens T, Hoke E T, Grancini G, Slotcavage D J, Eperon G E, Ball J M, De Bastiani M, Bowring A R, Martino N, Wojciechowski K, McGehee M D, Snaith H J, Petrozza A 2015 Adv. Energy Mater. 5 1500962

    [2]

    Takenaka T, Nagata H 2005 J. Eur. Ceram. Soc. 25 2693

    [3]

    Mesrar M, Lamcharfi T, Echatoui N, Abdi F, Harrach A, Ahjyaje F Z 2019 Moroc. J. Quant. Qual. Res. 1 14

    [4]

    Whittle K R, de los Reyes M, Aughterson R D, Blackford M G, Smith K L, Baldo P, Ryan E P, Zaluzec N J, Lumpkin G R 2018 Materialia 3 186

    [5]

    Shkuratov S I, Baird J, Antipov V G, Talantsev E F, Chase J B, Hackenberger W, Luo J, Jo H R, Lynch C S 2017 Sci. Rep. 7 46758

    [6]

    Shkuratov S I, Baird J, Antipov V G, Hackenberger W, Luo J, Zhang S J, Lynch C S, Chase J B, Jo H R, Roberts C C 2018 Appl. Phys. Lett. 112 122903

    [7]

    Suchanicz J, Jankowska-Sumara I, Kruzina T V 2011 J. Electroceram. 27 45

    [8]

    Mesrar M, Lamcharfi T, Echatoui N S, Abdi F 2022 Materialia 22 101404

    [9]

    Panda P K 2009 J. Mater. Sci. 44 5049

    [10]

    Smolenskii G A, Isupov V A, Agranovskaya A I, Krainik N N 1961 Phys. Solid State 2 2651

    [11]

    Suchanicz J, Poleder K, Kania A, Handerek J 1988 Ferroelectrics 77 107

    [12]

    Fleddermann C B, Nation J A 2002 IEEE Trans. Plasma Sci. 25 212

    [13]

    Jiang Y, Wang X, Zhang F, He H 2014 Smart Mater. Struct. 23 085020

    [14]

    Shkuratov S I, Baird J, Talantsev E F 2013 Appl. Phys. Lett. 102 052906

    [15]

    Shkuratov S I, Talantsev E F, Baird J 2011 J. Appl. Phys. 110 024113

    [16]

    Shkuratov S I, Baird J, Antipov V G, Lynch C S, Zhang S J, Chase J B, Jo H R 2021 J. Mater. Chem. A 9 12307

    [17]

    Zhao D, Lenz T, Gelinck G H, Groen P, Damjanovic D, de Leeuw D M, Katsouras I 2019 Nat. Commun. 10 2547

    [18]

    Gao Z P, Peng W, Chen B, Redfern S A T, Wang K, Chu B J, He Q, Sun Y, Chen X F, Nie H C, Deng W, Zhang L K, He H L, Wang G S, Dong X L 2019 Phys. Rev. Mater. 3 035401

    [19]

    Orayech B, Faik A, López G A, Fabelo O, Igartua J M 2015 J. Appl. Crystallogr. 48 318

    [20]

    Chang R C, Chu S Y, Lin Y F, Hong C S, Wong Y P 2007 J. Eur. Ceram. Soc. 27 4453

    [21]

    Dwivedi S, Pareek T, Kumar S 2018 RSC Adv. 8 24286

    [22]

    Ge W, Li J, Viehland D, Chang Y F, Messing G L 2011 Phys. Rev. B 83 224110

    [23]

    Liu Y, Liu H, Sun S, Wang L, Chen J 2022 Scr. Mater. 207 114283

    [24]

    Wang X L, Luo Y H, Huang H L, Chen M C, Su Z E, Liu C, Chen C, Li W, Fang Y Q, Jiang X, Zhang J, Li L, Liu N L, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 120 260502

    [25]

    Borges Z V, Poffo C M, de Lima J C, Souza S M, Trichês D M, de Biasi R S 2018 J. Appl. Phys. 124 215901

    [26]

    Jones G O, Thomas P A 2002 Acta Crystallogr. B 58 168

    [27]

    Kreisel J, Bouvier P, Dkhil B, Thomas P A, Glazer A M, Welberry T R, Chaabane B, Mezouar M 2003 Phys. Rev. B 68 014113

    [28]

    Kreisel J, Glazer A M, Bouvier P, Lucazeau G 2001 Phys. Rev. B 63 174106

    [29]

    Bujakiewicz-Korońska R, Natanzon Y 2008 Phase Transit. 81 1117.

    [30]

    Suchanicz J 2002 J. Mater. Sci. 37 489.

    [31]

    Yang G Z, Xie L, Chen X P, He R Q, Han T X, Niu G L, Fang L M, He D W 2022 Acta Phys. Sin. 71 156101 (in Chinese) [杨功章, 谢雷, 陈喜平, 何瑞琦, 韩铁鑫, 牛国梁, 房雷鸣, 贺端威 2022 71 156101]

    [32]

    Shi Y, Chen X P, Xie L, Sun G A, Fang L M 2019 Acta Phys. Sin. 68 116101 (in Chinese) [史钰, 陈喜平, 谢雷, 孙光爱, 房雷鸣 2022 68 116101]

    [33]

    Sun J C, Chen X P, Xie L, Fang L M 2024 Chin. J. High Pressure Phys. 38 030111 (in Chinese) [孙嘉程, 陈喜平, 谢雷, 房雷鸣 2024 高压 38 030111]

    [34]

    Fang L M, Cheng X P, Xie L, He D W, Hu Q W, Li X, Jiang M Q, Sun G A, Cheng B, Peng S M, Li H, Han T X 2020 Chin. J. High Pressure Phys. 34 050104 (in Chinese) [房雷鸣, 陈喜平, 谢雷, 贺端威, 胡启威, 李欣, 江明全, 孙光爱, 陈波, 彭述明, 李昊, 韩铁鑫 2020 高压 34 050104]

    [35]

    Kandemir T, Wallacher D, Hansen T, Liss K D, Naumann d'Alnoncourt R, Schlögl R, Behrens M 2012 Nucl. Instrum. Methods Phys. Res. A 673 51

    [36]

    Jacobsen M K, Ridley C J, Bocian A, Kirichek O, Manuel P, Khalyavin D, Azuma M, Attfield J P, Kamenev K V 2014 Rev. Sci. Instrum. 85 043904

    [37]

    Xu H, Zhao Y, Zhang J, Hickmott D D, Daemen L L 2007 Phys. Chem. Miner. 34 223

    [38]

    Zhou Z Y, Gao Z P, Xiong Z W, Liu G M, Zheng T, Shi Y J, Xiao M Z, Wu J G, Fang L M, Han T X, Liang H, He H L 2022 Appl. Phys. Lett. 121 113903

    [39]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [40]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [41]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [42]

    Zhou Z Y, Xiong Z W, Liu X R, Zeng T, Liu W B, Wu J G, Gao Z P 2024 Phys. Rev. B 109 104108

    [43]

    Chen H H, Peng F, Mao H K, Shen G Y, Liermann H P, Li Z, Shu J F 2010 J. Appl. Phys. 107 113503

    [44]

    Gerward L, Olsen J S, Petit L, Vaitheeswaran G, Kanchana V, Svane A 2005 J. Alloys Compd. 400 56

    [45]

    Singh P P, Kumar M 2004 Phys. B Condens. Matter 344 41.

    [46]

    Voigt W 1889 Ann. Phys. Chem 274 573.

    [47]

    Reuss A 1929 Zeit. Angew. Math. Mech 9 49.

    [48]

    Hill R 1952 Proc. Phys. Soc. A 65 349.

    [49]

    Chen M J, Guo J X, Wu H, Zheng X R, Ming N, Tian H, Li Q J, Dou S Y, Sheng L H 2025 Acta Phys. Sin. 74 177102 (in Chinese) [陈美娟, 郭佳芯, 吴浩, 郑潇然,闵楠,田辉,李全军,都时禹,沈龙海 2025 74 177102]

    [50]

    Yamanaka T, Nagai T, Okada T, Fukuda T 2005 Z. Kristallogr. - Cryst. Mater. 220 938.

    [51]

    Robinson K, Gibbs G V, Ribbe P H 1971 Science 172 567.

    [52]

    Zhou Z Y, Fang L M, Xiong Z W, Zhang Y J, Liu Y X, Liu G M, Liu Y, He R Q, Han T X, Li J, Wang K, Gao Z P 2023 Appl. Phys. Lett. 123 012904.

  • [1] 郑鹏飞, 柳志旭, 王超, 刘卫芳. 基团替代调控无铅有机钙钛矿铁电体的极化和压电特性的第一性原理研究.  , doi: 10.7498/aps.73.20240385
    [2] 田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰. BaF 2高压相变行为的第一性原理研究.  , doi: 10.7498/aps.71.20211163
    [3] 田城, 蓝剑雄, 王苍龙, 翟鹏飞, 刘杰. BaF2高压相变行为的第一性原理研究.  , doi: 10.7498/aps.70.20211163
    [4] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算.  , doi: 10.7498/aps.68.20182128
    [5] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究.  , doi: 10.7498/aps.65.237101
    [6] 张力, 陈朗. 固相硝基甲烷相变的第一性原理计算.  , doi: 10.7498/aps.63.098105
    [7] 刘本琼, 谢雷, 段晓溪, 孙光爱, 陈波, 宋建明, 刘耀光, 汪小琳. 铀的结构相变及力学性能的第一性原理计算.  , doi: 10.7498/aps.62.176104
    [8] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质.  , doi: 10.7498/aps.62.087104
    [9] 余本海, 陈东. α-, β-和γ-Si3N4 高压下的电子结构和相变: 第一性原理研究.  , doi: 10.7498/aps.61.197102
    [10] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究.  , doi: 10.7498/aps.61.097102
    [11] 李晓凤, 刘中利, 彭卫民, 赵阿可. 高压下CaPo弹性性质和热力学性质的第一性原理研究.  , doi: 10.7498/aps.60.076501
    [12] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究.  , doi: 10.7498/aps.59.4930
    [13] 卢志鹏, 祝文军, 卢铁城, 刘绍军, 崔新林, 陈向荣. 单轴应变条件下Fe从α到ε结构相变机制的第一性原理计算.  , doi: 10.7498/aps.59.4303
    [14] 季正华, 曾祥华, 岑洁萍, 谭明秋. ZnSe相变、电子结构的第一性原理计算.  , doi: 10.7498/aps.59.1219
    [15] 卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣. 非静水压条件下铁从α到ε结构相变的第一性原理计算.  , doi: 10.7498/aps.58.2083
    [16] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算.  , doi: 10.7498/aps.57.438
    [17] 明保全, 王矜奉, 臧国忠, 王春明, 盖志刚, 杜 鹃, 郑立梅. 铌酸钾钠基无铅压电陶瓷的X射线衍射与相变分析.  , doi: 10.7498/aps.57.5962
    [18] 孙 博, 刘绍军, 祝文军. Fe在高压下第一性原理计算的芯态与价态划分.  , doi: 10.7498/aps.55.6589
    [19] 宫长伟, 王轶农, 杨大智. NiTi形状记忆合金马氏体相变的第一性原理研究.  , doi: 10.7498/aps.55.2877
    [20] 赵明磊, 钟维烈, 王春雷, 王矜奉, 张沛霖. 钛酸铋钠系铁电体的相变研究.  , doi: 10.7498/aps.51.1856
计量
  • 文章访问数:  51
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-15

/

返回文章
返回
Baidu
map