-
强冲击加载下延性材料的层裂损伤演化过程包含了孔洞成核、增长、汇合以及最后材料的断裂/破碎等物理过程,孔洞增长基本保持球形扩展,损伤演化过程可分为孔洞成核与增长以及孔洞汇合与增长两个阶段,且孔洞之间汇合以接触汇合形式为主。基于三角函数形式,给出了孔洞数密度变化全过程的唯像物理描述方法,进而构建耦合孔洞分布特征变化规律的层裂损伤演化方程。新模型不仅全面反映了孔洞成核、增长以及汇合的物理过程,展示损伤演化过程中的孔洞分布特征的变化规律,而且计算结果可以给出材料内部的损伤状态以及孔洞数密度的分布情况,这为损伤之后材料的再压缩和破碎问题的分析提供了有效支撑。微观计算统计结果和相关实验结果验证了新模型的适用性。At the present stage, the development of spallation damage research is restricted because of the lack of real-time experimental means to capture the variation of void growth and its distribution characteristics and the effective mathematical description method to describe the variation of pore distribution characteristics. Under strong impact loading, the spallation damage evolution of ductile materials includes physical processes such as nucleation, growth, coalescence and finally fracture/fragmentation of materials. The growth of voids basically maintains the expansion of spherical holes. The damage evolution process can be divided into two stages: nucleation and growth of voids, and coalescence and growth of voids. The coalescence between voids is mainly by direct impingement. Based on the analysis of the variation law of the number of voids in the spallation damage evolution simulated by molecular dynamics, the probability distribution of the nucleation of voids is described in the form of cosine trigonometric function, and the reduction of void number due to the coalescence of voids is described in the form of sine trigonometric function. The phenomenological physical description method of the whole process of the variation of the number density of voids is given, and then the evolution equation of spallation damage coupled with the variation law of the number density of voids is constructed. The new model not only fully reflects the physical process of nucleation, growth and coalescence of voids, but also shows the changing law of the distribution characteristics of voids in damage evolution. The calculated results can give the damage state and the distribution of the number density of voids in the material, which provides an effective support for the analysis of recompression and fragmentation of materials after spall damage. At the same time, it also promotes the development of spallation damage research. The applicability of the new model is validated by the statistical results of microscopic molecular dynamics computation and related experimental results.
-
Keywords:
- spallation model /
- void nucleation /
- void coalescence /
- void distribution characteristics /
- shock loading /
- ductile metal
-
[1] Dongare A M 2020 J Mater Sci 55 3157
[2] Zhang F G, Zhou H Q, Hu X M, Wang P, Shao J L, Feng Q J 2016 Explo. Shock Waves 36 596(in Chinese)[张凤国,周洪强,胡晓棉,王裴,邵建立,冯其京 2016爆炸与冲击36 596]
[3] Zhang F G, Liu J, He A M, Zhao F Q, Wang P 2022 Acta Phys. Sin. 71 244601(in Chinese)[张凤国,刘军,何安民,赵福祺,王裴2022 71 244601]
[4] Dongare A M, Rajendran A M, LaMattina B, Zikry M A, Donald W. Brenner D W 2010 J. App. Phys. 108 113518
[5] Seaman L, Curran D R, Shockey D A 1976 J. App. Phys. 47 4814
[6] Molinari A, Wright W. A 2005 J. Mech. Phys. Solids 53 1476.
[7] Johnson J N 1981 J. App. Phys. 52 2812
[8] Gurson A L 1977 J. Eng. Mater. Technol. 99 2
[9] Trumel H, Hild F, Roy G, Pellegrini Y P, Denoual C 2009 J. Mech. Phys. Solids 57 1980
[10] Sui H N, Yu L, Liu W B, Liu Y, Duan H L 2022 J. Mech. Phys. Solids 168 105032
[11] Wilkerson J W 2017 I. J. Plasticity 95 21
[12] Huang Z P, Yang L M, Pan K L 1993 Advances in Mechanics 23 433(in Chinese) [黄筑平,杨黎明,潘客麟1993力学进展23 433]
[13] Tonks D L, Zurek A K, Thissell W R 2003 J. De Physique IV 110 893
[14] Wang Y G, He H L, Wang L L, Jing F Q 2006 Chinese Journal o f H igh Pressure Physics 20 127(in Chinese)[王永刚,贺红亮,王礼立,经福谦2006高压物理 学报20 127]
[15] Chen X, Asay J R, Dwivedi S K, Field D P 2006 J. Appl. Phys. 99 023528
[16] Lescoute E, De Rességuier T, Chevalier J-M, Loison D, Cuq-Lelandais J-P, Boustie M, Breil J, Maire P-H, Schurtz G 2010 J. Appl. Phys. 108 093510
[17] Liu J, Sun Z Y, Zhang F G, Wang P 2022 Explo. Shock Waves 42 033101(in Chinese)[刘军,孙致远,张凤国,王裴2022爆炸与冲击42 033101]
[18] Zhang F G, Wang Y J, Wang P, Wang X X 2025 Acta Phys. Sin. 74 014601(in Chinese)[张凤国,王言金,王裴,王欣欣2025 74 014601]
[19] Zhang F G, Zhao F Q, Liu J, He A M, Wang P 2022 Acta Phys Sin. 71 034601(in Chinese)[张凤国,赵福祺,刘军,何安民,王裴2022 71 034601]
[20] Rivas J M, Zurek A K, Thissell W R, Tonks D L, Hixson R S 2000 Metall. Mater. Trans. A 31 845
[21] Rajendran A M, Dietenberger M A 1989 J. Appl. Phys. 65 1521
计量
- 文章访问数: 30
- PDF下载量: 1
- 被引次数: 0








下载: