-
太阳风中的He离子与H2O分子碰撞的电荷转移截面是天体等离子体建模等领域所需的重要数据。然而,当前对应太阳风速度范围的中低能区He+离子与H2O分子碰撞的单电荷转移截面实验测量数据有限,基于第一性原理的理论计算尚未开展。本工作利用含时密度泛函非绝热耦合分子动力学模型,计算了1.33–1800 keV宽能量范围内He+离子与H2O分子碰撞的单电荷转移截面。模拟采用反转碰撞框架,探究了电荷转移和电子离子耦合动力学,发现H2O分子的单电荷转移截面有较强的分子取向依赖特性,并且低能区和高能区不同分子取向对截面的贡献有显著区别。截面计算结果与已有的实验以及经典理论模型数据较为符合,表明本文所用理论方法和数值框架不仅适用于处理非裸核离子和分子碰撞的电荷转移过程,还能定量分析分子取向对截面的影响。这为后续复杂碰撞体系的相关截面计算奠定了基础。本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00193中访问获取(审稿阶段请通过私有访问链接查看本文数据集https://www.scidb.cn/en/s/zqABV3)。The charge transfer cross sections of collisions between He ions in the solar wind and H2O molecule constitute essential data required for the astrophysical plasma modeling. However, experimental measurements of single charge transfer (SCT) cross sections for low-to-intermediate energy (corresponding to the velocity range of the solar wind) He+–H2O collisions are extremely scarce, and first-priciple theoretical calculations remain unperformed. In this study, employing the time-dependent density functional theory nonadiabatically coupling with the molecular dynamics, the SCT cross sections are calculated for He+–H2O collisions over an broad energy range of 1.33–1800 keV. The simulations utilize an inverse collision framework to investigate the charge transfer dynamics and electron-ion coupling processes. It is found that the SCT cross section exhibits a strong dependence on the molecular orientation. Furthermore, the contributions of different molecular orientations to the cross section differ significantly between the low-energy and high-energy regions. The computed cross section results show good agreement with the existing data obtained by experiments and classical theoretical models. This indicates that the present theoretical method and numerical framework are not only applicable to handling the charge transfer processes in collisions between dressed ions and molecules but also enable the quantitative analysis of the effect of molecular orientation on the cross section. This study lays a foundation for cross section calculations of complex collision systems. The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00193 (Please use the private access link https://www.scidb.cn/en/s/zqABV3 to access the dataset during the peer review process).
-
Keywords:
- TDDFT /
- Ion collision /
- Charge transfer /
- Dressed ion
-
[1] Aumayr F, Ueda K, Sokell E, Schippers S, Sadeghpour H, Merkt F, Gallagher T F, Dunning F B, Scheier P, Echt O, Kirchner T, Fritzsche S, Surzhykov A, Ma X, Rivarola R, Fojon O, Tribedi L, Lamour E, Crespo López-Urrutia J R, Litvinov Y A, Shabaev V, Cederquist H, Zettergren H, Schleberger M, Wilhelm R A, Azuma T, Boduch P, Schmidt H T, Stöhlker T 2019 J. Phys. B 52171003
[2] Ma X W, Zhang S F, Wen W Q, Huang Z K, Hu Z M, Guo D L, Gao J W, Najjari B, Xu S Y, Yan S C, Yao K, Zhang R T, Gao Y, Zhu X L 2022 Chin. Phys. B 31093401
[3] Wu Y-J, Meng T-M, Zhang X-W, Tan X, Ma P-F, Yin H, Ren B-H, Tu B-S, Zhang R-T, Xiao J, Ma X-W, Zou Y-M, Wei B-R 2024 Acta Phys. Sin. 73240701(in Chinese) [吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞田, 肖君, 马新文, 邹亚明, 魏宝仁2024 73240701]
[4] Niu J, Zhang W, Qi Y, Gao J 2025 Acta Phys. Sin. 74153402(in Chinese) [牛佳洁, 张唯唯, 祁月盈, 高俊文2025 74153402]
[5] Lin X, Lin M, Wang K, Wu Y, Ren Y, Wang Y, Li J 2025 Acta Phys. Sin. 74152501(in Chinese) [林晓贺, 林敏娟, 王堃, 吴勇, 任元, 王瑜, 李婕维2025物 理学报74152501]
[6] Wei B, Zhang R 2025 Sci. Sin. Phys. Mech. Astron. 55250008(in Chinese) [魏宝仁, 张瑞田2025中国科学: 物理学力学天文学55250008]
[7] Wedlund C S, Bodewits D, Alho M, Hoekstra R, Behar E, Gronoff G, Gunell H, Nilsson H, Kallio E, Beth A 2019 Astron. Astrophys. 630 A35
[8] Fuselier S A, Shelley E G, Goldstein B E, Goldstein R, Neugebauer M, Ip W-H, Balsiger H, Rème H 1991 Astrophys. J. 379734
[9] Greenwood J B, Chutjian A, Smith S J 2000 Astrophys. J. 529605
[10] Koopman, D. W. 1968, Phys. Rev. 16657
[11] Rudd M E, Itoh A, Goffe T V 1985 Phys. Rev. A 322499
[12] Rudd M E, Goffe T V, Itoh A, DuBois R D 1985 Phys. Rev. A 32829
[13] Sataka M, Yagishita A, Y Nakai 1990 J. Phys. B 231225
[14] Bragg W H, Kleeman R 1905 Lond. Edinb. Dubl. Phil. Mag. J. Sci. 10318
[15] Garcia P M Y, Sigaud G M, Luna H, Santos A C F, Montenegro E C, Shah M B 2008 Phys. Rev. A 77052708
[16] Murakami M, Kirchner T, Horbatsch M 2012 Phys. Rev. A 86022719
[17] Jana D, Purkait K, Halder, Purkait M 2021 Eur. Phys. J. D 75245
[18] Zhang Y W, Gao J W, Wu Y, Zhou F Y, Wang J G, Sisourat N, Dubois A 2020 Phys. Rev. A 102022814
[19] Wang F, Hong X, Wang J, Kim K S 2011 J. Chem. Phys. 134154308
[20] Yu W, Gao C-Z, Sato S A, Castro A, Rubio A, Wei B 2021 Phys. Rev. A 103032816
[21] Hong X, Wang F, Wu Y, Gou B, Wang J 2016 Phys. Rev. A 93062706
[22] Yu W, Gao C-Z, ZhangY, Zhang F S, Hutton R, Zou Y, Wei B 2018 Phys. Rev. A 97032706
[23] Qin S, Gao C-Z, Yu W, Qu Y-Z 2021 Chin. Phys. Lett. 38063101
[24] Zhang H-H, Yu W-D, Gao C-Z, Qu Y-Z 2023 Chin. Phys. Lett. 40043101
[25] Tancogne-Dejean N, Oliveira M J, Andrade X, Appel Heiko, Borca C H, Breton G L, Buchholz F, Castro A, Corni S, Correa A A, Giovannini U D, Delgado A, Eich F G, Flick J, Gil G, Gomez A, Helbig N, Hübener H, Jestädt R, Jornet-Somoza J, Larsen A H, Lebedeva I V, Lüders M, Marques M A L, Ohlmann S T, Pipolo S, Rampp M, Rozzi C A, Strubbe D A, Sato S A, Schäfer C, Theophilou I, Welden A, Rubio A 2020 J. Chem. Phys. 152124119
[26] Vignale G 1995 Phys. Rev. Lett. 743233
[27] Gómez Pueyo A, Marques M A, Rubio A, Castro A 2018 J. Chem. Theory Comput. 143040
[28] Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 541703
[29] Perdew J P, Zunger A 1981 Phys. Rev. B 235048
[30] Imai T W, Kimura M, Gu J P, Hirsch G, Buenker R J, Wang J G, Stancil P C, Pichl L 2003 Phys. Rev. A 68012716
计量
- 文章访问数: 16
- PDF下载量: 0
- 被引次数: 0