-
以C4F8为代表的碳氟等离子体因其可精细调控的F/C比、高活性自由基密度及优异的材料选择性,已成为纳米级半导体刻蚀与沉积工艺的核心介质。高深宽比刻蚀中,发射光谱诊断将影响形貌的活性粒子密度与光谱特征关联实现原位监测,为精度与良率协同优化提供有效途径。这其中,兼具动力学模拟与光谱分析的等离子体模型是必不可少的。本文建立了一种适用于发射光谱的在线分析的C4F8/O2/Ar等离子体模型。通过C4F8分解路径与碳氟自由基氧化机制分析,精炼了化学反应全集。在此基础上,加入了F、CF、CF2、CO以及Ar与O的激发态能级的碰撞辐射过程,与光谱特征建立了关联。分析了典型感应耦合放电条件下活性粒子演化规律,并与实验数据进行了验证。结合动力学溯源,阐明了碳氟自由基与离子的产生损失机制,并讨论了可能存在的误差来源。该模型具有在实际刻蚀工艺场景中OES在线监测的应用前景。Octafluorocyclobutane (C4F8)-based fluorocarbon plasmas have emerged as the cornerstone of nanometre-scale etching and deposition in advanced semiconductor manufacturing, owing to their tunable fluorine-to-carbon (F/C) ratio, elevated density of reactive radicals, and superior material selectivity. In high-aspect-ratio pattern transfer, optical emission spectroscopy (OES) enables in-situ monitoring by correlating the density of morphology-determining radicals with their characteristic spectral signatures, thereby offering a viable pathway for the simultaneous optimisation of pattern fidelity and process yield. A predictive plasma model that integrates kinetic simulation with spectroscopic analysis is therefore indispensable.In this study, a C4F8/O2/Ar plasma model tailored for on-line emission-spectroscopy analysis is established. First, the comprehensive reaction mechanism is refined through a systematic investigation of C4F8 dissociation pathways and the oxidation kinetics of fluorocarbon radicals. Subsequently, radiative-collisional processes for the excited states of F, CF, CF2, CO, Ar and O are incorporated, establishing an explicit linkage between spectral features and radical densities. Under representative inductively coupled plasma (ICP) discharge conditions, the spatiotemporal evolution of the aforementioned active species is analysed and validated against experimental data. Kinetic back-tracking is employed to elucidate the formation and loss mechanisms of fluorocarbon radicals and ions, and potential sources of modelling uncertainty are discussed. This model holds promising potential for application in real-time OES monitoring during actual etching processes.
-
[1] Imamura T, Sakai I, Hayashi H, Sekine M, Hori M 2021 Jpn. J. Appl. Phys. 60 036001
[2] Antoun G, Tillocher T, Lefaucheux P, Faguet J, Maekawa K, Dussart R 2021 Sci Rep 11 357
[3] Nonaka T, Takahashi K, Uchida A, Tsuji O 2024 J. Micromech. Microeng. 34 085014
[4] You S, Lee Y J, Chae H, Kim C K 2022 Coatings 12 679
[5] Nunomura S, Tsutsumi T, Hori M 2025 Applied Surface Science 713 164180
[6] Huang S, Huard C, Shim S, Nam S K, Song I C, Lu S, Kushner M J 2019 Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 37 031304
[7] Lee B J, Efremov A, Nam Y, Kwon K H 2020 Plasma Chem Plasma Process 40 1365
[8] Li X, Ling L, Hua X, Fukasawa M, Oehrlein G S, Barela M, Anderson H M 2003 Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 21 284
[9] Chen J F, Zhu L F 2024 Acta Phys. Sin. 73 095201 (in Chinese) [陈锦峰,朱林繁 2024 73 095201]
[10] Kambara M, Kawaguchi S, Lee H J, Ikuse K, Hamaguchi S, Ohmori T, Ishikawa K 2023 Jpn. J. Appl. Phys. 62 SA0803
[11] Kazumi H, Hamasaki R, Tago K 1996 Plasma Sources Science and Technology 5 200
[12] Font G I, Morgan W L, Mennenga G 2002 Journal of Applied Physics 91 3530
[13] Vasenkov A V, Li X, Oehrlein G S, Kushner M J 2004 J. Vac. Sci. Technol. A 22
[14] Kokkoris G, Goodyear A, Cooke M, Gogolides E 2008 J. Phys. D: Appl. Phys. 41 195211
[15] Chun I, Efremov A, Yeom G Y, Kwon K H 2015 Thin Solid Films 579 136
[16] Le Dain G, Rhallabi A, Girard A, Cardinaud C, Roqueta F, Boufnichel M 2019 Plasma Sources Sci. Technol. 28 085002
[17] Wang Y F, Zhu X M, Zhang M Z, Meng S F, Jia J W, Chai H, Wang Y, Ning Z X 2021 Acta Phys. Sin. 70 095211 (in Chinese) [王彦飞,朱悉铭,张明智,孟圣峰,贾军伟,柴昊,王旸,宁中喜 2021 70 095211]
[18] Zhu X M, Pu Y K 2010 J. Phys. D: Appl. Phys. 43 403001
[19] Du Y Q, Liu W Y, Zhu A M, Li X S, Zhao T L, Liu Y X, Gao F, Xu Y, Wang Y N 2013 Acta Phys. Sin. 62 205208 (in Chinese) [杜永权,刘文耀,朱爱民,李小松,赵天亮,刘永新,高飞,徐勇,王友年 2013 62 205208]
[20] Zhang Z F, Gao J, Lei P, Zhou S S, Wang X B, Zuo D L 2018 Acta Phys. Sin. 67 145202 (in Chinese) [张秩凡,高俊,雷鹏,周素素,王新兵,左都罗 2018 67 145202]
[21] Kimura T, Hanaki K 2009 Jpn. J. Appl. Phys. 48 096004
[22] Park W, Han J, Park S, Moon S Y 2023 Vacuum 216 112466
[23] Kim B, Im S, Yoo G 2020 Electronics 10 49
[24] Qi L, Chang X, Mao J, Lin X, Wang X 2025 IEEE Transactions on Semiconductor Manufacturing 38
[25] Osipov A A, Iankevich G A, Speshilova A B, Gagaeva A E, Osipov A A, Enns Y B, Kazakin A N, Endiiarova E V, Belyanov I A, Ivanov V I, Alexandrov S E 2022 Sci Rep 12 5287
[26] Kuboi N 2024 Jpn. J. Appl. Phys. 63 080801
[27] Toneli D A, Pessoa R S, Roberto M, Gudmundsson J T 2019 Plasma Sources Sci. Technol. 28 025007
[28] Cunge G, Vempaire D, Ramos R, Touzeau M, Joubert O, Bodard P, Sadeghi N 2010 Plasma Sources Sci. Technol. 19 034017
[29] Franklin R N 2003 J. Phys. D: Appl. Phys. 36 R309
[30] Dai Z L, Wang Y N 2006 Front. Phys. China 1 178
[31] Zhang Y R, Gao F, Wang Y N 2021 Acta Phys. Sin. 70 095206 (in Chinese) [张钰如,高飞,王友年 2021 70 095206]
[32] Perrin J, Leroy O, Bordage M C 1996 Contrib. Plasma Phys. 36 3
[33] Efremov A M, Kim D P, Kim C I 2004 Vacuum 75 133
[34] Rauf S, Ventzek P L G 2002 Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 20 14
[35] Christophorou L G, Olthoff J K 1999 Journal of Physical and Chemical Reference Data 28 967
[36] Kimura T, Noto M 2006 Journal of Applied Physics 100 063303
[37] Lowke J J, Phelps A V, Irwin B W 1973 Journal of Applied Physics 44 4664
[38] Itikawa Y 2015 Journal of Physical and Chemical Reference Data 44 013105
[39] Rauf S, Kushner M J 1997 Journal of Applied Physics 82 2805
[40] Tachibana K 1986 Phys. Rev. A 34 1007
[41] Levko D, Shukla C, Upadhyay R R, Raja L L 2021 Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 39 042202
[42] Bose D, Rauf S, Hash D B, Govindan T R, Meyyappan M 2004 Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 22 2290
[43] Hayashi T, Ishikawa K, Iwayama H, Sekine M, Hori M 2022 Jpn. J. Appl. Phys. 61 106006
[44] Christophorou L G, Olthoff J K, Rao M V V S 1996 Journal of Physical and Chemical Reference Data 25 1341
[45] I. C. Plumb, K. R. Ryan 1986 Plasma Chemistry and Plasma Processing 6
[46] Kimura T, Noto M 2006 Journal of Applied Physics 100 063303
[47] Donnelly V M, Guha J, Stafford L 2011 Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 29 010801
[48] You H S, Yook Y G, Chang W S, Park J H, Oh M J, Kwon D C, Yoon J S, Yu D H, Kwon H C, Park S K, Im Y H 2020 J. Phys. D: Appl. Phys. 53 385207
[49] Zhang D, Kushner M J 2000 Journal of Applied Physics 87 1060
[50] Walkup R E, Saenger K L, Selwyn G S 1986 The Journal of Chemical Physics 84 2668
[51] Kramida A 2011 7th International Conference on Atomic and Molecular Data and Their Applications Vilnius, (Lithuania) , 2011 p81-95
[52] Kunze H J 2009 Introduction to Plasma Spectroscopy (Berlin, Heidelberg: Springer Berlin Heidelberg) p183
[53] Lopaev D V, Volynets A V, Zyryanov S M, Zotovich A I, Rakhimov A T 2017 J. Phys. D: Appl. Phys. 50 075202
[54] Kiss L D B, Nicolai J P, Conner W T, Sawin H H 1992 Journal of Applied Physics 71 3186
[55] Karakas E, Kaler S, Lou Q, Donnelly V M, Economou D J 2014 J. Phys. D: Appl. Phys. 47 085203
[56] Boffard J B, Lin C C, DeJosephJr C A 2004 J. Phys. D: Appl. Phys. 37 R143
[57] Lee B J, Efremov A, Kwon K 2021 Plasma Processes & Polymers 18 2000249
[58] Zhu X M, Wang L, Wang Y F, Wang Y, Yu D R, Bartschat K 2024 Plasma Sources Sci. Technol. 33 055006
[59] Zhu X M, Pu Y K, Celik Y, Siepa S, Schüngel E, Luggenhölscher D, Czarnetzki U 2012 Plasma Sources Sci. Technol. 21 024003
计量
- 文章访问数: 19
- PDF下载量: 0
- 被引次数: 0








下载: