搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C4F8/O2/Ar等离子体发射光谱在线分析的碰撞辐射模型

张展凌 朱悉铭 王璐 赵宇 杨熙鸿

引用本文:
Citation:

C4F8/O2/Ar等离子体发射光谱在线分析的碰撞辐射模型

张展凌, 朱悉铭, 王璐, 赵宇, 杨熙鸿

Collisional-radiative model for on-line analysis of C4F8/O2/Ar plasma optical emission spectroscopy

ZHANG Zhanling, ZHU Ximing, WANG Lu, ZHAO Yu, YANG Xihong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 以C4F8为代表的碳氟等离子体因其可精细调控的F/C比、高活性自由基密度及优异的材料选择性, 已成为纳米级半导体刻蚀与沉积工艺的核心介质. 高深宽比刻蚀中, 发射光谱诊断将影响形貌的活性粒子密度与光谱特征关联实现原位监测, 为精度与良率协同优化提供有效途径. 这其中, 兼具动力学模拟与光谱分析的等离子体模型是必不可少的. 本文建立了一种适用于发射光谱的在线分析的C4F8/O2/Ar等离子体模型. 通过C4F8分解路径与碳氟自由基氧化机制分析, 精炼了化学反应全集. 在此基础上, 加入了F, CF, CF2, CO以及Ar与O的激发态能级的碰撞辐射过程, 与光谱特征建立了关联. 分析了典型感应耦合放电条件下活性粒子演化规律, 并与实验数据进行了验证. 结合动力学溯源, 阐明了碳氟自由基与离子的产生损失机制, 并讨论了可能存在的误差来源. 该模型具有在实际刻蚀工艺场景中发射光谱在线监测的应用前景.
    Octafluorocyclobutane (C4F8)-based fluorocarbon plasmas have become a cornerstone of nanometre-scale etching and deposition in advanced semiconductor manufacturing, owing to their tunable fluorine-to-carbon (F/C) ratio, high density of reactive radicals, and superior material selectivity. In high-aspect-ratio pattern transfer, optical emission spectroscopy (OES) enables in-situ monitoring by correlating the density of morphology-determining radicals with their characteristic spectral signatures, thereby providing a viable pathway for the simultaneously optimizing pattern fidelity and process yield. A predictive plasma model that integrates kinetic simulation with spectroscopic analysis is therefore indispensable. In this study, a C4F8/O2/Ar plasma model tailored for on-line emission-spectroscopy analysis is established. First, the comprehensive reaction mechanism is refined through a systematic investigation of C4F8 dissociation pathways and the oxidation kinetics of fluorocarbon radicals. Subsequently, the radiative-collisional processes for the excited states of F, CF, CF2, CO, Ar and O are incorporated, establishing an explicit linkage between spectral features and radical densities. Under representative inductively coupled plasma (ICP) discharge conditions, the spatiotemporal evolution of the aforementioned active species is analyzed and validated against experimental data. Kinetic back-tracking is employed to elucidate the formation and loss mechanisms of fluorocarbon radicals and ions, and potential sources of modelling uncertainty are discussed. This model has promising potential for application in real-time OES monitoring during actual etching processes.
  • 图 1  本文方法流程图

    Fig. 1.  Principle of the method developed in this work.

    图 2  C4F8分解机制图

    Fig. 2.  Reaction pathway diagram of C4F8 dissociation.

    图 3  CFx氧化机制图

    Fig. 3.  Oxidation mechanism diagram of CFx.

    图 4  F, O和CO密度实验-模型验证

    Fig. 4.  F, O, and CO density experiment - model validation.

    图 5  中性粒子密度计算结果

    Fig. 5.  Calculation result of neutral particle density.

    图 6  离子密度计算结果

    Fig. 6.  Calculation result of ion density.

    图 7  (a) ${\mathrm{CF}}_2^+ $与(b) O(3p.3P)动力学过程占比分析结果

    Fig. 7.  Analysis results of the proportion of (a) ${\mathrm{CF}}_2^+ $ and (b) O(3p.3P) kinetic processes.

    图 8  (a) O原子密度光学标定/修正与模型的相对误差; (b) O(3p.3P)基态/分解激发的速率系数

    Fig. 8.  (a) Relative error between optical calibration/correction of O atom density and model; (b) rate coefficient of O(3p.3P) ground state/decomposition excitation.

    图 A1  实验装置和诊断系统示意图

    Fig. A1.  Schematic diagram of experimental setup and diagnostic system.

    图 B1  本文C4F8/O2/Ar等离子体模型各粒子密度计算结果与Lee等文献值(15%O2)比较

    Fig. B1.  Comparison of C4F8/O2/Ar plasma particle densities of this work with Lee et al.(15%O2).

    表 1  等离子体模型中涉及到的公式

    Table 1.  Equations mentioned in the model.

    编号 公式 注释
    E1 $ \dfrac{{{\text{d}}{n_k}}}{{{\text{d}}t}} = \displaystyle\sum\limits_V {R_V^ + } (k) - \displaystyle\sum\limits_V {R_V^ - (k)} + \displaystyle\sum\limits_S {R_S^ + (k)} - \displaystyle\sum\limits_S {R_S^ - (k)} = 0 $ $ {n_k} $: 物质k密度
    $ R_V^ + (k) $: 物质k气相生成速率
    $ R_V^ - (k) $: 物质k气相损失速率
    $ R_S^ + (k) $: 物质k表面生成速率
    $ R_S^ - (k) $: 物质k表面损失速率
    E2 $ {R_V} = {K_V}\displaystyle\sum\limits_v {{n_v}} $

    $ R_V^{{\text{rad}}} = A {n_v} $
    $ {K_V} $: 气相反应速率系数
    $ {n_v} $: 气相反应物密度
    $ R_V^{{\text{rad}}} $: 气相自发辐射速率
    A: 爱因斯坦系数
    E3 $ {K_V} = a T_{\text{e}}^b\exp \left( { - \dfrac{c}{{{T_{\text{e}}}}}} \right) $

    $ K_V^{{\text{exc}}} = \displaystyle\int_0^\infty {\sigma ({E_{\text{e}}})\sqrt {\dfrac{{2{E_{\text{e}}}}}{{{m_{\text{e}}}}}} f({E_{\text{e}}}){\text{d}}{E_{\text{e}}}} $
    $ {T_e} $: 电子温度
    a, b, c: Arrhenius公式参数
    $ K_V^{{\text{exc}}} $: 气相激发反应速率系数
    Ee: 电子能量
    me: 电子质量
    $ \sigma ({E_{\text{e}}}) $: 激发截面
    $ f({E_{\text{e}}}) $: 电子能量分布
    E4 $ {R_{\text{S}}} = {K_{\text{S}}}{n_{\text{s}}} $ $ {n_{\text{s}}} $: 表面损失物质密度
    E5 $ K_S^{\text{n}} = {\left[ {\dfrac{{{\varLambda ^2}}}{{{D_{\text{n}}}}} + \dfrac{{2 V(2 - \gamma )}}{{S{u_{\text{n}}}\gamma }}} \right]^{ - 1}} $ $ K_S^{\text{n}} $: 中性粒子表面损失系数
    $ {D_{\text{n}}} $: 扩散系数
    $ \gamma $: 表面黏附系数
    $ {u_{\text{n}}} $: 平均热速度
    V, S: 反应腔室体积和表面积
    E6 $ {\varLambda ^{ - 2}} = {\left( {\dfrac{{\pi}}{l}} \right)^2} + {\left( {\dfrac{{2.405}}{r}} \right)^2} $ $ \varLambda $: 有效扩散长度
    l, r: 反应腔室高度和半径
    E7 $ K_{\text{S}}^{+} = 2{u_{\text{B}}}\left(\dfrac{{{h_{\text{l}}}}}{l} + \dfrac{{{h_{\text{r}}}}}{r}\right) $ $ K_{\text{S}}^{+} $: 离子表面损失系数
    $ {u_{\text{B}}} $: 玻姆速度
    E8 ${h_{\text{l}}} = 0.86{\left( {3.0 + \dfrac{l}{{2\lambda }}} \right)^{ - 1/2}}$ ${h_{\text{l}}}$: 轴向边界-中心离子密度比
    $\lambda $: 平均自由程
    E9 ${h_{\text{r}}} = 0.80{\left( {4.0 + \dfrac{r}{{{\lambda _{\text{i}}}}}} \right)^{ - 1/2}}$ ${h_{\text{r}}}$: 径向边界-中心离子密度比
    下载: 导出CSV

    表 2  模型中考虑的基本物种

    Table 2.  Different species taken into account in the model.

    类别 物种
    离子 CF+3, ${\mathrm{CF}}_2^+ $, CF+, Ar+
    自由基 CF3, CF2, CF, COF, F, C, O
    中性产物 C2F4, CF4, F2, COF2, CO, CO2
    原料气体 C4F8, O2, Ar
    下载: 导出CSV

    表 3  激发态物种集

    Table 3.  Excited state species taken into account in the model.

    类别 物种
    Ar* Ar(1s5)-Ar(1s2), Ar(2p10)-Ar(2p1)
    O* O(2p.1D), O(2p.1S), O(3s.3So), O(3s.5So),
    O(3p.3P), O(3p.5P), O(3p.3Do), O(3p.5Do)
    F* F(3s.2P), F(3s.4P), F(3s.2D), F(3p.2So), F(3p.4So),
    F(3p.2Po), F(3p.4Po), F(3p.2Do), F(3p.4Do)
    CF* CF(a4Σ), CF(A2Σ), CF(b4Π), CF(B2Δ),
    CF(C2Σ)
    CF* 2 CF2(A1B1), CF2(X1A2), CF2(X3A2),
    CF2(X3B1), CF2(X3B2)
    CO* CO(a3Π), CO(A1Π), CO(b3Σ), CO(B1Σ)
    下载: 导出CSV

    表 A1  气相反应集

    Table A1.  The set of gas phase reactions.

    反应编号 反应式 速率系数/(cm3·s–1) 参考文献
    a b c
    电子碰撞反应
    R1 e + C4F8 → 2C2F4 + e 9.58 × 10–8 0.042 8.572 [12]
    R2 e + C2F4 → 2CF2 + e 1.32 × 10–8 0.412 6.329 [12]
    R3 e + CF4 → CF3 + F + e 2.10 × 10–9 0.936 12.004 [35]
    R4 e + CF3 → CF2 + F + e 7.94 × 10–8 –0.452 12.100 [12]
    R5 e + CF2 → CF + F + e 1.16 × 10–8 –0.380 –14.350 [12]
    R6 e + CF → C + F + e 4.51 × 10–8 –0.110 8.941 [12]
    R7 e + F2 → 2F + e 1.08 × 10–8 –0.296 4.464 [12]
    R8 e + COF2 → COF + F + e 3.20 × 10–9 0.013 10.300 [36]
    R9 e + CO2 → CO + O + e 2.90 × 10–9 0.302 12.100 [37]
    R10 e + CO → C + O + e 1.54 × 10–8 0.270 14.600 [38]
    R11 e + O2 → 2O + e 1.71 × 10–8 –1.270 7.310 [39]
    R12 e + CF4 → ${\mathrm{CF}}_3^+ $ + F + 2e 2.29 × 10–8 0.680 18.304 [35]
    R13 e + CF3 → ${\mathrm{CF}}_2^+ $ + F + 2e 7.02 × 10–9 0.430 16.280 [12]
    R14 e + CF2 → CF+ + F + 2e 5.43 × 10–9 0.561 14.290 [12]
    R15 e + ${\mathrm{CF}}_3^+ $ → CF2 + F 6.54 × 10–8 –0.500 0.025 [13]
    R16 e + ${\mathrm{CF}}_2^+ $ → CF + F 6.54 × 10–8 –0.500 0.025 [13]
    R17 e + CF+ → C + F 6.54 × 10–8 –0.500 0.025 [13]
    R18 e + CF3 → ${\mathrm{CF}}_3^+ $ + 2e 1.36 × 10–9 0.796 9.057 [12]
    R19 e + CF2 → ${\mathrm{CF}}_2^+ $ + 2e 1.10 × 10–8 0.393 11.370 [12]
    R20 e + CF → CF+ + 2e 5.48 × 10–9 0.556 9.723 [12]
    R21 e + Ar → Ar+ + 2e 7.35 × 10–8 0.208 19.100 [40]
    电荷交换反应
    R22 $ {\mathrm{CF}}_2^+$ + CF → ${\mathrm{CF}}_3^+ $ + C 2.06 × 10–9 0 0 [13]
    R23 ${\mathrm{CF}}_2^+ $ + C → CF+ + CF 1.04 × 10–9 0 0 [13]
    R24 CF+ + CF3 → ${\mathrm{CF}}_3^+ $ + CF 1.71 × 10–9 0 0 [13]
    R25 CF+ + CF2 → ${\mathrm{CF}}_2^+ $ + CF 1.00 × 10–9 0 0 [13]
    R26 Ar+ + CF4 → ${\mathrm{CF}}_3^+ $ + F + Ar 4.80 × 10–10 0 0 [13]
    R27 Ar+ + CF3 → ${\mathrm{CF}}_2^+ $ + F + Ar 5.00 × 10–10 0 0 [13]
    R28 Ar+ + CF2 → CF+ + F + Ar 5.00 × 10–10 0 0 [13]
    氧化反应
    R29 CF3 + O → COF2 + F 3.30 × 10–11 0 0 [13]
    R30 CF2 + O → COF + F 3.10 × 10–11 0 0 [13]
    R31 CF + O → CO + F 6.60 × 10–11 0 0 [13]
    R32 COF + O → CO2 + F 9.30 × 10–11 0 0 [13]
    R33 COF + COF → COF2 + CO 1.00 × 10–11 0 0 [13]
    R34 C + CO2 → 2CO 1.00 × 10–15 0 0 [41]
    R35 COF + CF3 → COF2 + CF2 1.00 × 10–11 0 0 [13]
    R36 COF + CF2 → COF2 + CF 3.00 × 10–13 0 0 [13]
    R37 COF + CF3 → CO + CF4 1.00 × 10–11 0 0 [13]
    R38 COF + CF2 → CO + CF3 3.00 × 10–13 0 0 [13]
    重组反应
    R39 F + CF3 → CF4 2.00 × 10–11 0 0 [13]
    R40 F + CF2 → CF3 1.80 × 10–11 0 0 [13]
    R41 F + CF → CF2 9.96 × 10–11 0 0 [13]
    R42 F2 + CF3 → CF4 + F 1.90 × 10–14 0 0 [13]
    R43 F2 + CF2 → CF3 + F 8.30 × 10–14 0 0 [13]
    下载: 导出CSV

    表 A2  表面反应集

    Table A2.  The set of surface reactions.

    反应编号 反应式 速率系数
    原子扩散
    R44 O → $\dfrac{1}{2} $O2 4.20 × 103 s–1
    R45 F → $\dfrac{1}{2} $F2 3.2 × 102 s–1
    离子扩散
    R46 ${\mathrm{CF}}_3^+ $ → CF3 6.73 × 103 s–1
    R47 ${\mathrm{CF}}_2^+ $ → CF2 7.91 × 103 s–1
    R48 CF+ → CF 1.00 × 104 s–1
    R49 Ar+ → Ar 8.85 × 103 s–1
    等效表面反应
    R50 C2F4 + C2F4 → C4F8 1.00 × 10–11 cm3/s
    R51 CF2 + CF2 → C2F4 1.00 × 10–11 cm3/s
    R52 C + F → CF 1.00 × 10–11 cm3/s
    下载: 导出CSV

    表 B1  本文C4F8/O2/Ar等离子体模型输入参数与Lee等[57]文献对比表

    Table B1.  Comparison of C4F8/O2/Ar plasma model input parameters of this work with Lee et al. [57].

    参数Kimura和Noto[46]Lee等[57]
    ICP腔室尺寸
    半径/mm8080
    高度/mm80130
    放电工况
    气压/mTorr3010
    功率/W140700
    气流/sccm4040
    等离子参数
    电子温度/eV2.93—3.053.60—4.25
    电子密度/cm–35.48 × 1010
    1.00 × 1011
    5.00 × 1010
    6.20 × 1010
    下载: 导出CSV
    Baidu
  • [1]

    Imamura T, Sakai I, Hayashi H, Sekine M, Hori M 2021 Jpn. J. Appl. Phys. 60 036001Google Scholar

    [2]

    Antoun G, Tillocher T, Lefaucheux P, Faguet J, Maekawa K, Dussart R 2021 Sci. Rep. 11 357Google Scholar

    [3]

    Nonaka T, Takahashi K, Uchida A, Tsuji O 2024 J. Micromech. Microeng. 34 085014Google Scholar

    [4]

    You S, Lee Y J, Chae H, Kim C K 2022 Coatings 12 679Google Scholar

    [5]

    Nunomura S, Tsutsumi T, Hori M 2025 Appl. Surface Sci. 713 164180Google Scholar

    [6]

    Huang S, Huard C, Shim S, Nam S K, Song I C, Lu S, Kushner M J 2019 J. Vac. Sci. Technol. A 37 031304Google Scholar

    [7]

    Lee B J, Efremov A, Nam Y, Kwon K H 2020 Plasma Chem. Plasma Process. 40 1365Google Scholar

    [8]

    Li X, Ling L, Hua X, Fukasawa M, Oehrlein G S, Barela M, Anderson H M 2003 J. Vac. Sci. Technol. A 21 284Google Scholar

    [9]

    陈锦峰, 朱林繁 2024 73 095201Google Scholar

    Chen J F, Zhu L F 2024 Acta Phys. Sin. 73 095201Google Scholar

    [10]

    Kambara M, Kawaguchi S, Lee H J, Ikuse K, Hamaguchi S, Ohmori T, Ishikawa K 2023 Jpn. J. Appl. Phys. 62 SA0803Google Scholar

    [11]

    Kazumi H, Hamasaki R, Tago K 1996 Plasma Sources Sci. Technol. 5 200Google Scholar

    [12]

    Font G I, Morgan W L, Mennenga G 2002 J. Appl. Phys. 91 3530Google Scholar

    [13]

    Vasenkov A V, Li X, Oehrlein G S, Kushner M J 2004 J. Vac. Sci. Technol. A 22

    [14]

    Kokkoris G, Goodyear A, Cooke M, Gogolides E 2008 J. Phys. D: Appl. Phys. 41 195211Google Scholar

    [15]

    Chun I, Efremov A, Yeom G Y, Kwon K H 2015 Thin Solid Films 579 136Google Scholar

    [16]

    Le-Dain G, Rhallabi A, Girard A, Cardinaud C, Roqueta F, Boufnichel M 2019 Plasma Sources Sci. Technol. 28 085002Google Scholar

    [17]

    王彦飞, 朱悉铭, 张明智, 孟圣峰, 贾军伟, 柴昊, 王旸, 宁中喜 2021 70 095211Google Scholar

    Wang Y F, Zhu X M, Zhang M Z, Meng S F, Jia J W, Chai H, Wang Y, Ning Z X 2021 Acta Phys. Sin. 70 095211Google Scholar

    [18]

    Zhu X M, Pu Y K 2010 J. Phys. D: Appl. Phys. 43 403001Google Scholar

    [19]

    杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年 2013 62 205208Google Scholar

    Du Y Q, Liu W Y, Zhu A M, Li X S, Zhao T L, Liu Y X, Gao F, Xu Y, Wang Y N 2013 Acta Phys. Sin. 62 205208Google Scholar

    [20]

    张秩凡, 高俊, 雷鹏, 周素素, 王新兵, 左都罗 2018 67 145202Google Scholar

    Zhang Z F, Gao J, Lei P, Zhou S S, Wang X B, Zuo D L 2018 Acta Phys. Sin. 67 145202Google Scholar

    [21]

    Kimura T, Hanaki K 2009 Jpn. J. Appl. Phys. 48 096004Google Scholar

    [22]

    Park W, Han J, Park S, Moon S Y 2023 Vacuum 216 112466Google Scholar

    [23]

    Kim B, Im S, Yoo G 2020 Electronics 10 49Google Scholar

    [24]

    Qi L, Chang X, Mao J, Lin X, Wang X 2025 IEEE Trans. Semiconduct. Manuf. 38

    [25]

    Osipov A A, Iankevich G A, Speshilova A B, Gagaeva A E, Osipov A A, Enns Y B, Kazakin A N, Endiiarova E V, Belyanov I A, Ivanov V I, Alexandrov S E 2022 Sci. Rep. 12 5287Google Scholar

    [26]

    Kuboi N 2024 Jpn. J. Appl. Phys. 63 080801Google Scholar

    [27]

    Toneli D A, Pessoa R S, Roberto M, Gudmundsson J T 2019 Plasma Sources Sci. Technol. 28 025007Google Scholar

    [28]

    Cunge G, Vempaire D, Ramos R, Touzeau M, Joubert O, Bodard P, Sadeghi N 2010 Plasma Sources Sci. Technol. 19 034017Google Scholar

    [29]

    Franklin R N 2003 J. Phys. D: Appl. Phys. 36 R309Google Scholar

    [30]

    Dai Z L, Wang Y N 2006 Front. Phys. China 1 178Google Scholar

    [31]

    张钰如, 高飞, 王友年 2021 70 095206Google Scholar

    Zhang Y R, Gao F, Wang Y N 2021 Acta Phys. Sin. 70 095206Google Scholar

    [32]

    Perrin J, Leroy O, Bordage M C 1996 Contrib. Plasma Phys. 36 3Google Scholar

    [33]

    Efremov A M, Kim D P, Kim C I 2004 Vacuum 75 133Google Scholar

    [34]

    Rauf S, Ventzek P L G 2002 J. Vac. Sci. Technol 20 14

    [35]

    Christophorou L G, Olthoff J K 1999 J. Phys. Chem. Ref. Data 28 967Google Scholar

    [36]

    Kimura T, Noto M 2006 J. Appl. Phys. 100 063303Google Scholar

    [37]

    Lowke J J, Phelps A V, Irwin B W 1973 J. Appl. Phys. 44 4664Google Scholar

    [38]

    Itikawa Y 2015 J. Phys. Chem. Ref. Data 44 013105Google Scholar

    [39]

    Rauf S, Kushner M J 1997 J. Appl. Phys. 82 2805Google Scholar

    [40]

    Tachibana K 1986 Phys. Rev. A 34 1007Google Scholar

    [41]

    Levko D, Shukla C, Upadhyay R R, Raja L L 2021 J. Vac. Sci. Technol. B 39 042202

    [42]

    Bose D, Rauf S, Hash D B, Govindan T R, Meyyappan M 2004 J. Vac. Sci. Technol. A 22 2290Google Scholar

    [43]

    Hayashi T, Ishikawa K, Iwayama H, Sekine M, Hori M 2022 Jpn. J. Appl. Phys. 61 106006Google Scholar

    [44]

    Christophorou L G, Olthoff J K, Rao M V V S 1996 J. Phys. Chem. Ref. Data 25 1341Google Scholar

    [45]

    Plumb I C, Ryan K R 1986 Plasma Chem. Plasma Process. 6 205Google Scholar

    [46]

    Kimura T, Noto M 2006 J. Appl. Phys. 100 063303Google Scholar

    [47]

    Donnelly V M, Guha J, Stafford L 2011 J. Vac. Sci. Technol. A 29 010801

    [48]

    You H S, Yook Y G, Chang W S, Park J H, Oh M J, Kwon D C, Yoon J S, Yu D H, Kwon H C, Park S K, Im Y H 2020 J. Phys. D: Appl. Phys. 53 385207Google Scholar

    [49]

    Zhang D, Kushner M J 2000 J. Appl. Phys. 87 1060Google Scholar

    [50]

    Walkup R E, Saenger K L, Selwyn G S 1986 J. Chem. Phys. 84 2668Google Scholar

    [51]

    Kramida A 2011 7th International Conference on Atomic and Molecular Data and Their Applications Vilnius (Lithuania), 2011 p81−95

    [52]

    Kunze H J 2009 Introduction to Plasma Spectroscopy (Berlin, Heidelberg: Springer Berlin Heidelberg) p183

    [53]

    Lopaev D V, Volynets A V, Zyryanov S M, Zotovich A I, Rakhimov A T 2017 J. Phys. D: Appl. Phys. 50 075202Google Scholar

    [54]

    Kiss L D B, Nicolai J P, Conner W T, Sawin H H 1992 J. Appl. Phys. 71 3186Google Scholar

    [55]

    Karakas E, Kaler S, Lou Q, Donnelly V M, Economou D J 2014 J. Phys. D: Appl. Phys. 47 085203Google Scholar

    [56]

    Boffard J B, Lin C C, DeJosephJr C A 2004 J. Phys. D: Appl. Phys. 37 R143Google Scholar

    [57]

    Lee B J, Efremov A, Kwon K 2021 Plasma Process. Polym. 18 2000249Google Scholar

    [58]

    Zhu X M, Wang L, Wang Y F, Wang Y, Yu D R, Bartschat K 2024 Plasma Sources Sci. Technol. 33 055006Google Scholar

    [59]

    Zhu X M, Pu Y K, Celik Y, Siepa S, Schüngel E, Luggenhölscher D, Czarnetzki U 2012 Plasma Sources Sci. Technol. 21 024003Google Scholar

  • [1] 王均武, 玄洪文, 俞航航, 王新兵, Vassily S. Zakharov. 激光诱导放电等离子体极紫外辐射的模拟.  , doi: 10.7498/aps.73.20231158
    [2] 孟举, 何贞岑, 颜君, 吴泽清, 姚科, 李冀光, 吴勇, 王建国. 电四极跃迁对电子束离子阱等离子体中离子能级布居的影响.  , doi: 10.7498/aps.71.20220489
    [3] 韩小英, 李凌霄, 戴振生, 郑无敌, 古培俊, 吴泽清. 一个快速模拟热稠密非平衡等离子体的碰撞辐射模型.  , doi: 10.7498/aps.70.20201946
    [4] 王彦飞, 朱悉铭, 张明志, 孟圣峰, 贾军伟, 柴昊, 王旸, 宁中喜. 基于前馈神经网络的等离子体光谱诊断方法.  , doi: 10.7498/aps.70.20202248
    [5] 章太阳, 陈冉. 东方超环(EAST)装置中等离子体边界锂杂质的碰撞-辐射模型.  , doi: 10.7498/aps.66.125201
    [6] 吴坚, 李兴文, 李沫, 杨泽锋, 史宗谦, 贾申利, 邱爱慈. AlK壳层等离子体辐射谱模型的比对.  , doi: 10.7498/aps.64.205201
    [7] 谢会乔, 谭熠, 刘阳青, 王文浩, 高喆. 中国联合球形托卡马克氦放电等离子体的碰撞辐射模型及其在谱线比法诊断的应用.  , doi: 10.7498/aps.63.125203
    [8] 杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年. 双频容性耦合等离子体相分辨发射光谱诊断.  , doi: 10.7498/aps.62.205208
    [9] 朱竹青, 王晓雷. 飞秒激光空气等离子体发射光谱的实验研究.  , doi: 10.7498/aps.60.085205
    [10] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究.  , doi: 10.7498/aps.60.025203
    [11] 蒲昱东, 杨家敏, 靳奉涛, 张璐, 丁永坤. 辐射输运实验中的Al等离子体发射光谱研究.  , doi: 10.7498/aps.60.045210
    [12] 于新明, 程书博, 易有根, 张继彦, 蒲昱东, 赵阳, 胡峰, 杨家敏, 郑志坚. Al等离子体类锂伴线的布居机制分析及实验应用.  , doi: 10.7498/aps.60.085201
    [13] 李晶, 谢卫平, 黄显宾, 杨礼兵, 蔡红春, 蒲以康. “碰撞-辐射”模型在Z箍缩等离子体K壳层线辐射谱分析中的应用.  , doi: 10.7498/aps.59.7922
    [14] 段耀勇, 郭永辉, 邱爱慈, 吴刚. 碰撞辐射稳态等离子体电荷态分布的一种扩展模型.  , doi: 10.7498/aps.59.5588
    [15] 唐京武, 黄笃之, 易有根. Au激光等离子体X射线发射光谱的理论研究.  , doi: 10.7498/aps.59.7769
    [16] 李阳平, 刘正堂. 等离子体发射光谱诊断用于射频磁控溅射GaP薄膜的工艺参数优化.  , doi: 10.7498/aps.58.5022
    [17] 牛田野, 曹金祥, 刘 磊, 刘金英, 王 艳, 王 亮, 吕 铀, 王 舸, 朱 颖. 低温氩等离子体中的单探针和发射光谱诊断技术.  , doi: 10.7498/aps.56.2330
    [18] 李 勇, 孙成伟, 刘志文, 张庆瑜. 磁控溅射ZnO薄膜生长的等离子体发射光谱研究.  , doi: 10.7498/aps.55.4232
    [19] 万 雄, 于盛林, 王长坤, 乐淑萍, 李冰颖, 何兴道. 多目标优化发射层析算法在等离子体场光谱诊断中的应用.  , doi: 10.7498/aps.53.3104
    [20] 张 红, 程新路, 杨向东, 谢方军, 张继彦, 杨国洪. 金等离子体平均离化度随电子温度变化关系的研究.  , doi: 10.7498/aps.52.3098
计量
  • 文章访问数:  227
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-31
  • 修回日期:  2025-11-10
  • 上网日期:  2025-11-13

/

返回文章
返回
Baidu
map