搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C4F8/O2/Ar等离子体发射光谱在线分析的碰撞辐射模型

张展凌 朱悉铭 王璐 赵宇 杨熙鸿

引用本文:
Citation:

C4F8/O2/Ar等离子体发射光谱在线分析的碰撞辐射模型

张展凌, 朱悉铭, 王璐, 赵宇, 杨熙鸿

A collisional-radiative model of C4F8/O2/Ar plasma for on-line optical emission spectroscopy

Zhang Zhan-Ling, Zhu Xi-Ming, Wang Lu, Zhao Yu, Yang Xi-Hong
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 以C4F8为代表的碳氟等离子体因其可精细调控的F/C比、高活性自由基密度及优异的材料选择性,已成为纳米级半导体刻蚀与沉积工艺的核心介质。高深宽比刻蚀中,发射光谱诊断将影响形貌的活性粒子密度与光谱特征关联实现原位监测,为精度与良率协同优化提供有效途径。这其中,兼具动力学模拟与光谱分析的等离子体模型是必不可少的。本文建立了一种适用于发射光谱的在线分析的C4F8/O2/Ar等离子体模型。通过C4F8分解路径与碳氟自由基氧化机制分析,精炼了化学反应全集。在此基础上,加入了F、CF、CF2、CO以及Ar与O的激发态能级的碰撞辐射过程,与光谱特征建立了关联。分析了典型感应耦合放电条件下活性粒子演化规律,并与实验数据进行了验证。结合动力学溯源,阐明了碳氟自由基与离子的产生损失机制,并讨论了可能存在的误差来源。该模型具有在实际刻蚀工艺场景中OES在线监测的应用前景。
    Octafluorocyclobutane (C4F8)-based fluorocarbon plasmas have emerged as the cornerstone of nanometre-scale etching and deposition in advanced semiconductor manufacturing, owing to their tunable fluorine-to-carbon (F/C) ratio, elevated density of reactive radicals, and superior material selectivity. In high-aspect-ratio pattern transfer, optical emission spectroscopy (OES) enables in-situ monitoring by correlating the density of morphology-determining radicals with their characteristic spectral signatures, thereby offering a viable pathway for the simultaneous optimisation of pattern fidelity and process yield. A predictive plasma model that integrates kinetic simulation with spectroscopic analysis is therefore indispensable.In this study, a C4F8/O2/Ar plasma model tailored for on-line emission-spectroscopy analysis is established. First, the comprehensive reaction mechanism is refined through a systematic investigation of C4F8 dissociation pathways and the oxidation kinetics of fluorocarbon radicals. Subsequently, radiative-collisional processes for the excited states of F, CF, CF2, CO, Ar and O are incorporated, establishing an explicit linkage between spectral features and radical densities. Under representative inductively coupled plasma (ICP) discharge conditions, the spatiotemporal evolution of the aforementioned active species is analysed and validated against experimental data. Kinetic back-tracking is employed to elucidate the formation and loss mechanisms of fluorocarbon radicals and ions, and potential sources of modelling uncertainty are discussed. This model holds promising potential for application in real-time OES monitoring during actual etching processes.
  • [1]

    Imamura T, Sakai I, Hayashi H, Sekine M, Hori M 2021 Jpn. J. Appl. Phys. 60 036001

    [2]

    Antoun G, Tillocher T, Lefaucheux P, Faguet J, Maekawa K, Dussart R 2021 Sci Rep 11 357

    [3]

    Nonaka T, Takahashi K, Uchida A, Tsuji O 2024 J. Micromech. Microeng. 34 085014

    [4]

    You S, Lee Y J, Chae H, Kim C K 2022 Coatings 12 679

    [5]

    Nunomura S, Tsutsumi T, Hori M 2025 Applied Surface Science 713 164180

    [6]

    Huang S, Huard C, Shim S, Nam S K, Song I C, Lu S, Kushner M J 2019 Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 37 031304

    [7]

    Lee B J, Efremov A, Nam Y, Kwon K H 2020 Plasma Chem Plasma Process 40 1365

    [8]

    Li X, Ling L, Hua X, Fukasawa M, Oehrlein G S, Barela M, Anderson H M 2003 Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 21 284

    [9]

    Chen J F, Zhu L F 2024 Acta Phys. Sin. 73 095201 (in Chinese) [陈锦峰,朱林繁 2024 73 095201]

    [10]

    Kambara M, Kawaguchi S, Lee H J, Ikuse K, Hamaguchi S, Ohmori T, Ishikawa K 2023 Jpn. J. Appl. Phys. 62 SA0803

    [11]

    Kazumi H, Hamasaki R, Tago K 1996 Plasma Sources Science and Technology 5 200

    [12]

    Font G I, Morgan W L, Mennenga G 2002 Journal of Applied Physics 91 3530

    [13]

    Vasenkov A V, Li X, Oehrlein G S, Kushner M J 2004 J. Vac. Sci. Technol. A 22

    [14]

    Kokkoris G, Goodyear A, Cooke M, Gogolides E 2008 J. Phys. D: Appl. Phys. 41 195211

    [15]

    Chun I, Efremov A, Yeom G Y, Kwon K H 2015 Thin Solid Films 579 136

    [16]

    Le Dain G, Rhallabi A, Girard A, Cardinaud C, Roqueta F, Boufnichel M 2019 Plasma Sources Sci. Technol. 28 085002

    [17]

    Wang Y F, Zhu X M, Zhang M Z, Meng S F, Jia J W, Chai H, Wang Y, Ning Z X 2021 Acta Phys. Sin. 70 095211 (in Chinese) [王彦飞,朱悉铭,张明智,孟圣峰,贾军伟,柴昊,王旸,宁中喜 2021 70 095211]

    [18]

    Zhu X M, Pu Y K 2010 J. Phys. D: Appl. Phys. 43 403001

    [19]

    Du Y Q, Liu W Y, Zhu A M, Li X S, Zhao T L, Liu Y X, Gao F, Xu Y, Wang Y N 2013 Acta Phys. Sin. 62 205208 (in Chinese) [杜永权,刘文耀,朱爱民,李小松,赵天亮,刘永新,高飞,徐勇,王友年 2013 62 205208]

    [20]

    Zhang Z F, Gao J, Lei P, Zhou S S, Wang X B, Zuo D L 2018 Acta Phys. Sin. 67 145202 (in Chinese) [张秩凡,高俊,雷鹏,周素素,王新兵,左都罗 2018 67 145202]

    [21]

    Kimura T, Hanaki K 2009 Jpn. J. Appl. Phys. 48 096004

    [22]

    Park W, Han J, Park S, Moon S Y 2023 Vacuum 216 112466

    [23]

    Kim B, Im S, Yoo G 2020 Electronics 10 49

    [24]

    Qi L, Chang X, Mao J, Lin X, Wang X 2025 IEEE Transactions on Semiconductor Manufacturing 38

    [25]

    Osipov A A, Iankevich G A, Speshilova A B, Gagaeva A E, Osipov A A, Enns Y B, Kazakin A N, Endiiarova E V, Belyanov I A, Ivanov V I, Alexandrov S E 2022 Sci Rep 12 5287

    [26]

    Kuboi N 2024 Jpn. J. Appl. Phys. 63 080801

    [27]

    Toneli D A, Pessoa R S, Roberto M, Gudmundsson J T 2019 Plasma Sources Sci. Technol. 28 025007

    [28]

    Cunge G, Vempaire D, Ramos R, Touzeau M, Joubert O, Bodard P, Sadeghi N 2010 Plasma Sources Sci. Technol. 19 034017

    [29]

    Franklin R N 2003 J. Phys. D: Appl. Phys. 36 R309

    [30]

    Dai Z L, Wang Y N 2006 Front. Phys. China 1 178

    [31]

    Zhang Y R, Gao F, Wang Y N 2021 Acta Phys. Sin. 70 095206 (in Chinese) [张钰如,高飞,王友年 2021 70 095206]

    [32]

    Perrin J, Leroy O, Bordage M C 1996 Contrib. Plasma Phys. 36 3

    [33]

    Efremov A M, Kim D P, Kim C I 2004 Vacuum 75 133

    [34]

    Rauf S, Ventzek P L G 2002 Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 20 14

    [35]

    Christophorou L G, Olthoff J K 1999 Journal of Physical and Chemical Reference Data 28 967

    [36]

    Kimura T, Noto M 2006 Journal of Applied Physics 100 063303

    [37]

    Lowke J J, Phelps A V, Irwin B W 1973 Journal of Applied Physics 44 4664

    [38]

    Itikawa Y 2015 Journal of Physical and Chemical Reference Data 44 013105

    [39]

    Rauf S, Kushner M J 1997 Journal of Applied Physics 82 2805

    [40]

    Tachibana K 1986 Phys. Rev. A 34 1007

    [41]

    Levko D, Shukla C, Upadhyay R R, Raja L L 2021 Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 39 042202

    [42]

    Bose D, Rauf S, Hash D B, Govindan T R, Meyyappan M 2004 Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 22 2290

    [43]

    Hayashi T, Ishikawa K, Iwayama H, Sekine M, Hori M 2022 Jpn. J. Appl. Phys. 61 106006

    [44]

    Christophorou L G, Olthoff J K, Rao M V V S 1996 Journal of Physical and Chemical Reference Data 25 1341

    [45]

    I. C. Plumb, K. R. Ryan 1986 Plasma Chemistry and Plasma Processing 6

    [46]

    Kimura T, Noto M 2006 Journal of Applied Physics 100 063303

    [47]

    Donnelly V M, Guha J, Stafford L 2011 Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 29 010801

    [48]

    You H S, Yook Y G, Chang W S, Park J H, Oh M J, Kwon D C, Yoon J S, Yu D H, Kwon H C, Park S K, Im Y H 2020 J. Phys. D: Appl. Phys. 53 385207

    [49]

    Zhang D, Kushner M J 2000 Journal of Applied Physics 87 1060

    [50]

    Walkup R E, Saenger K L, Selwyn G S 1986 The Journal of Chemical Physics 84 2668

    [51]

    Kramida A 2011 7th International Conference on Atomic and Molecular Data and Their Applications Vilnius, (Lithuania) , 2011 p81-95

    [52]

    Kunze H J 2009 Introduction to Plasma Spectroscopy (Berlin, Heidelberg: Springer Berlin Heidelberg) p183

    [53]

    Lopaev D V, Volynets A V, Zyryanov S M, Zotovich A I, Rakhimov A T 2017 J. Phys. D: Appl. Phys. 50 075202

    [54]

    Kiss L D B, Nicolai J P, Conner W T, Sawin H H 1992 Journal of Applied Physics 71 3186

    [55]

    Karakas E, Kaler S, Lou Q, Donnelly V M, Economou D J 2014 J. Phys. D: Appl. Phys. 47 085203

    [56]

    Boffard J B, Lin C C, DeJosephJr C A 2004 J. Phys. D: Appl. Phys. 37 R143

    [57]

    Lee B J, Efremov A, Kwon K 2021 Plasma Processes & Polymers 18 2000249

    [58]

    Zhu X M, Wang L, Wang Y F, Wang Y, Yu D R, Bartschat K 2024 Plasma Sources Sci. Technol. 33 055006

    [59]

    Zhu X M, Pu Y K, Celik Y, Siepa S, Schüngel E, Luggenhölscher D, Czarnetzki U 2012 Plasma Sources Sci. Technol. 21 024003

  • [1] 王均武, 玄洪文, 俞航航, 王新兵, Vassily S. Zakharov. 激光诱导放电等离子体极紫外辐射的模拟.  , doi: 10.7498/aps.73.20231158
    [2] 孟举, 何贞岑, 颜君, 吴泽清, 姚科, 李冀光, 吴勇, 王建国. 电四极跃迁对电子束离子阱等离子体中离子能级布居的影响.  , doi: 10.7498/aps.71.20220489
    [3] 韩小英, 李凌霄, 戴振生, 郑无敌, 古培俊, 吴泽清. 一个快速模拟热稠密非平衡等离子体的碰撞辐射模型.  , doi: 10.7498/aps.70.20201946
    [4] 王彦飞, 朱悉铭, 张明志, 孟圣峰, 贾军伟, 柴昊, 王旸, 宁中喜. 基于前馈神经网络的等离子体光谱诊断方法.  , doi: 10.7498/aps.70.20202248
    [5] 章太阳, 陈冉. 东方超环(EAST)装置中等离子体边界锂杂质的碰撞-辐射模型.  , doi: 10.7498/aps.66.125201
    [6] 吴坚, 李兴文, 李沫, 杨泽锋, 史宗谦, 贾申利, 邱爱慈. AlK壳层等离子体辐射谱模型的比对.  , doi: 10.7498/aps.64.205201
    [7] 谢会乔, 谭熠, 刘阳青, 王文浩, 高喆. 中国联合球形托卡马克氦放电等离子体的碰撞辐射模型及其在谱线比法诊断的应用.  , doi: 10.7498/aps.63.125203
    [8] 杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年. 双频容性耦合等离子体相分辨发射光谱诊断.  , doi: 10.7498/aps.62.205208
    [9] 朱竹青, 王晓雷. 飞秒激光空气等离子体发射光谱的实验研究.  , doi: 10.7498/aps.60.085205
    [10] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究.  , doi: 10.7498/aps.60.025203
    [11] 蒲昱东, 杨家敏, 靳奉涛, 张璐, 丁永坤. 辐射输运实验中的Al等离子体发射光谱研究.  , doi: 10.7498/aps.60.045210
    [12] 于新明, 程书博, 易有根, 张继彦, 蒲昱东, 赵阳, 胡峰, 杨家敏, 郑志坚. Al等离子体类锂伴线的布居机制分析及实验应用.  , doi: 10.7498/aps.60.085201
    [13] 李晶, 谢卫平, 黄显宾, 杨礼兵, 蔡红春, 蒲以康. “碰撞-辐射”模型在Z箍缩等离子体K壳层线辐射谱分析中的应用.  , doi: 10.7498/aps.59.7922
    [14] 段耀勇, 郭永辉, 邱爱慈, 吴刚. 碰撞辐射稳态等离子体电荷态分布的一种扩展模型.  , doi: 10.7498/aps.59.5588
    [15] 唐京武, 黄笃之, 易有根. Au激光等离子体X射线发射光谱的理论研究.  , doi: 10.7498/aps.59.7769
    [16] 李阳平, 刘正堂. 等离子体发射光谱诊断用于射频磁控溅射GaP薄膜的工艺参数优化.  , doi: 10.7498/aps.58.5022
    [17] 牛田野, 曹金祥, 刘 磊, 刘金英, 王 艳, 王 亮, 吕 铀, 王 舸, 朱 颖. 低温氩等离子体中的单探针和发射光谱诊断技术.  , doi: 10.7498/aps.56.2330
    [18] 李 勇, 孙成伟, 刘志文, 张庆瑜. 磁控溅射ZnO薄膜生长的等离子体发射光谱研究.  , doi: 10.7498/aps.55.4232
    [19] 万 雄, 于盛林, 王长坤, 乐淑萍, 李冰颖, 何兴道. 多目标优化发射层析算法在等离子体场光谱诊断中的应用.  , doi: 10.7498/aps.53.3104
    [20] 张 红, 程新路, 杨向东, 谢方军, 张继彦, 杨国洪. 金等离子体平均离化度随电子温度变化关系的研究.  , doi: 10.7498/aps.52.3098
计量
  • 文章访问数:  19
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-13

/

返回文章
返回
Baidu
map