搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上海软X射线自由电子激光上的复合速度成像谱仪

廖剑峰 封云飞 吴可非 陶建飞 朱文韬 黄健业 丁伯承 刘小井

引用本文:
Citation:

上海软X射线自由电子激光上的复合速度成像谱仪

廖剑峰, 封云飞, 吴可非, 陶建飞, 朱文韬, 黄健业, 丁伯承, 刘小井

The composite velocity imaging spectrometer on the Shanghai Soft X-ray Free Electron Laser Facility

LIAO Jianfeng, FENG Yunfei, WU Kefei, TAO Jianfei, ZHU Wentao, HUANG Jianye, DING Bocheng, LIU Xiaojing
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 时间和角度分辨的光电离实验能够跟踪原子分子的几何构型和电子态演化,这需要在自由电子激光中测量电子离子全空间角分布。本文报道在上海软X射线自由电子激光装置上的复合速度成像谱仪的首次实验结果。在263.8 eV下,用自由电子激光电离Kr和CCl4样品,通过Andor和TPX3CAM两台相机分别获得电子动量图像与离子质谱。Kr的3p、3d、4p光电子及俄歇电子峰的强度与前人实验符合,角分布参数β与前人计算符合。同样,CCl4分子Cl的2p光电子、2p俄歇电子及价壳层电子的角分布也与已有计算结果符合良好。用TPX3CAM相机测量了碎片离子的动量分布,揭示了CCl4的光解离路径。结果表明,复合速度成像谱仪在实验中兼具全立体角收集与高分辨率优势,为自由电子激光光诱导动力学研究提供了可靠的实验平台。
    Temporal- and angular-resolved photoionization experiments are essential for probing the geometric and electronic structural dynamics of atoms and molecules. Such studies require the measurement of full angular distributions of electrons and ions in free electron laser (FEL) experiments. Here, we present the first experimental results from the composite velocity imaging spectrometer (CpVMI) at the Shanghai Soft X-ray Free Electron Laser Facility (SXFEL). The study demonstrates its ability to capture energy and angular information for electrons and ions with high resolution and full solid-angle collection.
    Krypton (Kr) atoms and carbon tetrachloride (CCl4) molecules are ionized using FEL pulses at 263.8 eV. Electron momentum images were recorded with an Andor Zyla 4.2 PLUS camera, while ion time-of-flight mass spectra and momentum distributions were acquired using a TPX3CAM. For Kr, the electron spectrum contains peaks from 3p, 3d, and 4p photoionization, as well as the Auger electrons from 3d and 3p levels. The measured anisotropy parameters (β) of these electrons show good agreement with previous theoretical Hartree-Fock calculations. Ion abundance in the time-of-flight mass spectra of Kr was consistent with the ratio derived from the intensities of the corresponding photoelectron peaks.
    For CCl4, the electron spectrum contains Cl 2p photoelectrons, 2p Auger electrons, and valence-shell photoelectrons, with their angular distribution parameters also aligning with theoretical predictions. The TPX3CAM enabled direct measurement of the momenta of fragment ions without the need for inverse Abel transformation. By integrating the high-resolution flight time mass spectrometry and momentum imaging data obtained from TPX3CAM, we successfully visualized and analyzed the key photodissociation pathways of CCl4 molecules under the action of soft X-ray FEL. In particular, it distinguished between direct two-body dissociation and multi-step dissociation processes, and observed the unique angular distributions and kinetic energy release characteristics of different dissociation channels.
    In conclusion, the experimental results clearly demonstrate that the CpVMI fully meets the technical requirements for FEL user experiments in terms of energy, angular distribution, and momentum measurement, offering a platform for FEL light-induced dynamics research. Future enhancements, including improved light focusing and the use of supersonic molecular beams, are expected to further advance the instrument's performance.
  • [1]

    Zhao Z T, Feng C 2018 PHYSICS 47 481(in Chinese)[赵振堂,冯超 2018 物理 47 481]

    [2]

    Huang S, Ding Y, Feng Y, Hemsing E, Huang Z, Krzywinski J, Lutman A A, Marinelli A, Maxwell T J, Zhu D 2017 Physical Review Letters 119 154801

    [3]

    Ackermann W, Asova G, Ayvazyan V, Azima A, Baboi N, Bähr J, Balandin V, Beutner B, Brandt A, Bolzmann A, Brinkmann R, Brovko O I, Castellano M, Castro P, Catani L, Chiadroni E, Choroba S, Cianchi A, Costello J T, Cubaynes D, Dardis J, Decking W, Delsim-Hashemi H, Delserieys A, Di Pirro G, Dohlus M, Düsterer S, Eckhardt A, Edwards H T, Faatz B, Feldhaus J, Flöttmann K, Frisch J, Fröhlich L, Garvey T, Gensch U, Gerth C, Görler M, Golubeva N, Grabosch H J, Grecki M, Grimm O, Hacker K, Hahn U, Han J H, Honkavaara K, Hott T, Hüning M, Ivanisenko Y, Jaeschke E, Jalmuzna W, Jezynski T, Kammering R, Katalev V, Kavanagh K, Kennedy E T, Khodyachykh S, Klose K, Kocharyan V, Körfer M, Kollewe M, Koprek W, Korepanov S, Kostin D, Krassilnikov M, Kube G, Kuhlmann M, Lewis C L S, Lilje L, Limberg T, Lipka D, Löhl F, Luna H, Luong M, Martins M, Meyer M, Michelato P, Miltchev V, Möller W D, Monaco L, Müller W F O, Napieralski O, Napoly O, Nicolosi P, Nölle D, Nuñez T, Oppelt A, Pagani C, Paparella R, Pchalek N, Pedregosa-Gutierrez J, Petersen B, Petrosyan B, Petrosyan G, Petrosyan L, Pflüger J, Plönjes E, Poletto L, Pozniak K, Prat E, Proch D, Pucyk P, Radcliffe P, Redlin H, Rehlich K, Richter M, Roehrs M, Roensch J, Romaniuk R, Ross M, Rossbach J, Rybnikov V, Sachwitz M, Saldin E L, Sandner W, Schlarb H, Schmidt B, Schmitz M, Schmüser P, Schneider J R, Schneidmiller E A, Schnepp S, Schreiber S, Seidel M, Sertore D, Shabunov A V, Simon C, Simrock S, Sombrowski E, Sorokin A A, Spanknebel P, Spesyvtsev R, Staykov L, Steffen B, Stephan F, Stulle F, Thom H, Tiedtke K, Tischer M, Toleikis S, Treusch R, Trines D, Tsakov I, Vogel E, Weiland T, Weise H, Wellhöfer M, Wendt M, Will I, Winter A, Wittenburg K, Wurth W, Yeates P, Yurkov M V, Zagorodnov I, Zapfe K 2007 Nature Photonics 1 336

    [4]

    Zhong Y P, Yang X 2024 Acta Physica Sinica 73 194101(in Chinese)[仲银鹏,杨霞 2024 73 194101]

    [5]

    Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J, Brachmann A, Bucksbaum P, Coffee R, Decker F J, Ding Y, Dowell D, Edstrom S, Fisher A, Frisch J, Gilevich S, Hastings J, Hays G, Hering P, Huang Z, Iverson R, Loos H, Messerschmidt M, Miahnahri A, Moeller S, Nuhn H D, Pile G, Ratner D, Rzepiela J, Schultz D, Smith T, Stefan P, Tompkins H, Turner J, Welch J, White W, Wu J, Yocky G, Galayda J 2010 Nature Photonics 4 641

    [6]

    Ishikawa T, Aoyagi H, Asaka T, Asano Y, Azumi N, Bizen T, Ego H, Fukami K, Fukui T, Furukawa Y, Goto S, Hanaki H, Hara T, Hasegawa T, Hatsui T, Higashiya A, Hirono T, Hosoda N, Ishii M, Inagaki T, Inubushi Y, Itoga T, Joti Y, Kago M, Kameshima T, Kimura H, Kirihara Y, Kiyomichi A, Kobayashi T, Kondo C, Kudo T, Maesaka H, Maréchal X M, Masuda T, Matsubara S, Matsumoto T, Matsushita T, Matsui S, Nagasono M, Nariyama N, Ohashi H, Ohata T, Ohshima T, Ono S, Otake Y, Saji C, Sakurai T, Sato T, Sawada K, Seike T, Shirasawa K, Sugimoto T, Suzuki S, Takahashi S, Takebe H, Takeshita K, Tamasaku K, Tanaka H, Tanaka R, Tanaka T, Togashi T, Togawa K, Tokuhisa A, Tomizawa H, Tono K, Wu S, Yabashi M, Yamaga M, Yamashita A, Yanagida K, Zhang C, Shintake T, Kitamura H, Kumagai N 2012 Nature Photonics 6 540

    [7]

    Allaria E, Castronovo D, Cinquegrana P, Craievich P, Dal Forno M, Danailov M B, D'Auria G, Demidovich A, De Ninno G, Di Mitri S, Diviacco B, Fawley W M, Ferianis M, Ferrari E, Froehlich L, Gaio G, Gauthier D, Giannessi L, Ivanov R, Mahieu B, Mahne N, Nikolov I, Parmigiani F, Penco G, Raimondi L, Scafuri C, Serpico C, Sigalotti P, Spampinati S, Spezzani C, Svandrlik M, Svetina C, Trovo M, Veronese M, Zangrando D, Zangrando M 2013 Nature Photonics 7 913

    [8]

    Kang H S, Min C K, Heo H, Kim C, Yang H, Kim G, Nam I, Baek S Y, Choi H-J, Mun G, Park B R, Suh Y J, Shin D C, Hu J, Hong J, Jung S, Kim S-H, Kim K, Na D, Park S S, Park Y J, Han J H, Jung Y G, Jeong S H, Lee H G, Lee S, Lee S, Lee W-W, Oh B, Suh H S, Parc Y W, Park S-J, Kim M H, Jung N-S, Kim Y-C, Lee M-S, Lee B-H, Sung C-W, Mok I-S, Yang J M, Lee C-S, Shin H, Kim J H, Kim Y, Lee J H, Park S-Y, Kim J, Park J, Eom I, Rah S, Kim S, Nam K H, Park J, Park J, Kim S, Kwon S, Park S H, Kim K S, Hyun H, Kim S N, Kim S, Hwang S-m, Kim M J, Lim C-y, Yu C J, Kim B-S, Kang T-H, Kim K-W, Kim S-H, Lee H-S, Lee H-S, Park K-H, Koo T-Y, Kim D-E, Ko I S 2017 Nature Photonics 11 708

    [9]

    Milne C J, Schietinger T, Aiba M, Alarcon A, Alex J, Anghel A, Arsov V, Beard C, Beaud P, Bettoni S, Bopp M, Brands H, Brönnimann M, Brunnenkant I, Calvi M, Citterio A, Craievich P, Csatari Divall M, Dällenbach M, D’Amico M, Dax A, Deng Y, Dietrich A, Dinapoli R, Divall E, Dordevic S, Ebner S, Erny C, Fitze H, Flechsig U, Follath R, Frei F, Gärtner F, Ganter R, Garvey T, Geng Z, Gorgisyan I, Gough C, Hauff A, Hauri C P, Hiller N, Humar T, Hunziker S, Ingold G, Ischebeck R, Janousch M, Juranić P, Jurcevic M, Kaiser M, Kalantari B, Kalt R, Keil B, Kittel C, Knopp G, Koprek W, Lemke H T, Lippuner T, Llorente Sancho D, Löhl F, Lopez-Cuenca C, Märki F, Marcellini F, Marinkovic G, Martiel I, Menzel R, Mozzanica A, Nass K, Orlandi G L, Ozkan Loch C, Panepucci E, Paraliev M, Patterson B, Pedrini B, Pedrozzi M, Pollet P, Pradervand C, Prat E, Radi P, Raguin J-Y, Redford S, Rehanek J, Réhault J, Reiche S, Ringele M, Rittmann J, Rivkin L, Romann A, Ruat M, Ruder C, Sala L, Schebacher L, Schilcher T, Schlott V, Schmidt T, Schmitt B, Shi X, Stadler M, Stingelin L, Sturzenegger W, Szlachetko J, Thattil D, Treyer D M, Trisorio A, Tron W, Vetter S, Vicario C, Voulot D, Wang M, Zamofing T, Zellweger C, Zennaro R, Zimoch E, Abela R, Patthey L, Braun H-H 2017 Applied Sciences 7 720

    [10]

    Weise H, Decking W 2017 FEL2017 Santa Fe, USA, August

    [11]

    Zhao Z T, Wang D, Gu Q, Yin L X, Fang G, Gu M, Leng Y B, Zhou Q, Liu B, Tang C, Huang W, Liu Z, Jiang H D 2017 Synchrotron Radiation News 30 29

    [12]

    Halavanau A, Decker F-J, Emma C, Sheppard J, Pellegrini C 2019 Journal of Synchrotron Radiation 26 635

    [13]

    Liu T, Huang N S, Yang H X, Qi Z, Zhang K Q, Gao Z F, Chen S, Feng C, Zhang W, Luo H, Fu X X, Liu H, Faatz B, Deng H X, Liu B, Wang D, Zhao Z T 2023 Frontiers in Physics 11 1172368

    [14]

    Zhaunerchyk V, Kamińska M, Mucke M, Squibb R J, Eland J H D, Piancastelli M N, Frasinski L J, Grilj J, Koch M, McFarland B K, Sistrunk E, Gühr M, Coffee R N, Bostedt C, Bozek J D, Salén P, Meulen P v d, Linusson P, Thomas R D, Larsson M, Foucar L, Ullrich J, Motomura K, Mondal S, Ueda K, Richter R, Prince K C, Takahashi O, Osipov T, Fang L, Murphy B F, Berrah N, Feifel R 2015 Journal of Physics B: Atomic, Molecular and Optical Physics 48 244003

    [15]

    Liu X J, Miao Q, Gel'mukhanov F, Patanen M, Travnikova O, Nicolas C, Ågren H, Ueda K, Miron C 2015 Nature Photonics 9 120

    [16]

    Öhrwall G, Karlsson P, Wirde M, Lundqvist M, Andersson P, Ceolin D, Wannberg B, Kachel T, Dürr H, Eberhardt W, Svensson S 2011 Journal of Electron Spectroscopy and Related Phenomena 183 125

    [17]

    Patanen M, Svensson S, Martensson N 2015 Journal of Electron Spectroscopy and Related Phenomena 200 78

    [18]

    Hikosaka Y, Sawa M, Soejima K, Shigemasa E 2014 Journal of Electron Spectroscopy and Related Phenomena 192 69

    [19]

    Liu X J, CHI H, XIAO Z 2017 SCIENTIA SINICA Physica, Mechanica & Astronomica 47 033003(in Chinese)[刘小井,池华敬,肖志松 2018 物理 47 481]

    [20]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Reports on Progress in Physics 66 1463

    [21]

    Kastirke G, Schöffler M S, Weller M, Rist J, Boll R, Anders N, Baumann T M, Eckart S, Erk B, De Fanis A, Fehre K, Gatton A, Grundmann S, Grychtol P, Hartung A, Hofmann M, Ilchen M, Janke C, Kircher M, Kunitski M, Li X, Mazza T, Melzer N, Montano J, Music V, Nalin G, Ovcharenko Y, Pier A, Rennhack N, Rivas D E, Dörner R, Rolles D, Rudenko A, Schmidt P, Siebert J, Strenger N, Trabert D, Vela-Perez I, Wagner R, Weber T, Williams J B, Ziolkowski P, Schmidt L P H, Czasch A, Ueda K, Trinter F, Meyer M, Demekhin P V, Jahnke T 2020 Physical Review Letters 125 163201

    [22]

    Eppink A T J B, Parker D H 1997 Rev Sci Instrum 68 3477

    [23]

    O’Keeffe P, Feyer V, Bolognesi P, Coreno M, Callegari C, Cautero G, Moise A, Prince K C, Richter R, Sergo R, Alagia M, de Simone M, Kivimäki A, Devetta M, Mazza T, Piseri P, Lyamayev V, Katzy R, Stienkemeier F, Ovcharenko Y, Möller T, Avaldi L 2012 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 284 69

    [24]

    Skruszewicz S, Passig J, Przystawik A, Truong N X, Köther M, Tiggesbäumker J, Meiwes-Broer K H 2014 International Journal of Mass Spectrometry 365 338

    [25]

    Kling N G, Paul D, Gura A, Laurent G, De S, Li H, Wang Z, Ahn B, Kim C H, Kim T K, Litvinyuk I V, Cocke C L, Ben-Itzhak I, Kim D, Kling M F 2014 J Instrum 9 P05005

    [26]

    Schomas D, Rendler N, Krull J, Richter R, Mudrich M 2017 J Chem Phys 147 013942

    [27]

    Ding B C, Xu W Q, Wu R C, Feng Y F, Tian L F, Li X H, Huang J Y, Liu Z, Liu X J 2021 Applied Sciences

    [28]

    Feng Y F, Ding B C, Wu R C, Jin X, Wu K F, Liao J F, Huang J Y, Liu X J 2024 Applied Sciences 14 2190

    [29]

    Dribinski V, Ossadtchi A, Mandelshtam V A, Reisler H 2002 Rev Sci Instrum 73 2634

    [30]

    Zhao A, van Beuzekom M, Bouwens B, Byelov D, Chakaberia I, Cheng C, Maddox E, Nomerotski A, Svihra P, Visser J, Vrba V, Weinacht T 2017 Rev Sci Instrum 88 113104

    [31]

    Poikela T, Plosila J, Westerlund T, Campbell M, Gaspari M D, Llopart X, Gromov V, Kluit R, Beuzekom M v, Zappon F, Zivkovic V, Brezina C, Desch K, Fu Y, Kruth A 2014 J Instrum 9 C05013

    [32]

    Liu Z, Wan W S, Wang D 2024 Chinese Journal of Nature 46 161(in Chinese)[刘志, 万唯实, 王东 2024 自然杂志 46 161]

    [33]

    Thompson A, Attwood D, Gulikson E, Howells M, Kim K J, Kirz J, Kortright J, Lindau I, Pianetta P, Robinson A 2001

    [34]

    Hickstein D D, Gibson S T, Yurchak R, Das D D, Ryazanov M 2019 Rev Sci Instrum 90 065115

    [35]

    Palaudoux J, Lablanquie P, Andric L, Ito K, Shigemasa E, Eland J H D, Jonauskas V, Kučas S, Karazija R, Penent F 2010 Physical Review A 82 043419

    [36]

    Jauhiainen J, Kivimaki A, Aksela S, Sairanen O P, Aksela H 1995 Journal of Physics B: Atomic, Molecular and Optical Physics 28 4091

    [37]

    Tamenori Y, Okada K, Tanimoto S, Ibuki T, Nagaoka S, Fujii A, Haga Y, Suzuki I H 2003 Journal of Physics B: Atomic, Molecular and Optical Physics 37 117

    [38]

    Tamenori Y, Okada K, Nagaoka S, Ibuki T, Tanimoto S, Shimizu Y, Fujii A, Haga Y, Yoshida H, Ohashi H, Suzuki I H 2002 Journal of Physics B: Atomic, Molecular and Optical Physics 35 2799

    [39]

    Yeh J J, Lindau I 1985 Atomic Data and Nuclear Data Tables 32 1

    [40]

    Fournier P G, Comtet G, Fournier J, Svensson S, Karlsson L, Keane M P, Naves de Brito A 1989 Physical Review A 40 163

    [41]

    Ohta T, Kuroda H 1976 Bulletin of the Chemical Society of Japan 49 2939

    [42]

    Kime Y J, Driscoll D C, Dowben P A 1987 Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 83 403

    [43]

    Tsuji M, Furusawa M, Mizuguchi T, Muraoka T, Nishimura Y 1992 The Journal of Chemical Physics 97 245

    [44]

    Dos Santos A C F, Maciel J B, Rocha A B, de Souza G G B 2024 Atoms 12 74

  • [1] 聂勇敢, 高梓宸, 佟亚军, 范家东, 刘功发, 江怀东. 上海软X射线自由电子激光单脉冲成像定时的设计与实现.  , doi: 10.7498/aps.73.20240383
    [2] 李慧, 谭芳蕊, 尹皓玉, 马钺洋, 吴晓斌. 基于匀光管的极紫外消相干和光强均匀化仿真研究.  , doi: 10.7498/aps.73.20240335
    [3] 杜小娇, 魏龙, 孙羽, 胡水明. 自由电子激光制备高强度亚稳态氦原子和类氦离子.  , doi: 10.7498/aps.73.20240554
    [4] 仲银鹏, 杨霞. 基于自由电子激光的散射技术及谱学方法进展.  , doi: 10.7498/aps.73.20240930
    [5] 牟家连, 吕军光, 孙希磊, 兰小飞, 黄永盛. 环形正负电子对撞机带电粒子鉴别的飞行时间探测器.  , doi: 10.7498/aps.72.20222271
    [6] 贺书凯, 齐伟, 矫金龙, 董克攻, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 张辉, 沈百飞, 谷渝秋. 基于带电粒子活化法开展的SGⅡ-U皮秒激光质子加速实验研究.  , doi: 10.7498/aps.67.20181504
    [7] 宋文娟, 郭福明, 陈基根, 杨玉军. 双色高频激光作用下原子低阶次谐波的理论研究.  , doi: 10.7498/aps.67.20172129
    [8] 黎明, 杨兴繁, 许州, 束小建, 鲁向阳, 黄文会, 王汉斌, 窦玉焕, 沈旭明, 单李军, 邓德荣, 徐勇, 柏伟, 冯第超, 吴岱, 肖德鑫, 王建新, 罗星, 周奎, 劳成龙, 闫陇刚, 林司芬, 张鹏, 张浩, 和天慧, 潘清, 李相坤, 李鹏, 刘宇, 杨林德, 刘婕, 张德敏, 李凯, 陈亚男. 太赫兹自由电子激光的受激饱和实验.  , doi: 10.7498/aps.67.20172413
    [9] 郭晶, 郭福明, 陈基根, 杨玉军. 高频激光脉宽对原子光电子发射谱的影响.  , doi: 10.7498/aps.67.20172440
    [10] 贺书凯, 刘东晓, 矫金龙, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 谷渝秋. 用于激光加速质子参数表征的带电粒子活化测谱技术.  , doi: 10.7498/aps.66.205201
    [11] 王 潜, 徐金强, 武 锦, 李永贵. 利用扫描近场红外显微镜对化学样品组分进行成像研究.  , doi: 10.7498/aps.52.298
    [12] 李治宽. 自由电子激光器中的电子阻尼运动.  , doi: 10.7498/aps.49.893
    [13] 李治宽. 自由电子激光的准Dirac方程.  , doi: 10.7498/aps.46.1349
    [14] 文双春. 新型Wiggler谐波自由电子激光.  , doi: 10.7498/aps.46.272
    [15] 祝家清. 自由电子激光的能量转换.  , doi: 10.7498/aps.45.52
    [16] 方洪烈, G. T. MOORE, M. O. SCULLY. 注入信号对自由电子激光的影响.  , doi: 10.7498/aps.34.17
    [17] 方洪烈, 傅淑芬, G. T. 穆尔. 自由电子激光器的稳定脉冲解.  , doi: 10.7498/aps.33.935
    [18] 尹元昭. 自由电子激光放大器的理论分析.  , doi: 10.7498/aps.32.1407
    [19] 杨金刚, 李卫江, 郭清江, 朱光华, 姜承烈. 带有磁分析器的半导体探测器带电粒子谱仪.  , doi: 10.7498/aps.23.52
    [20] 王璈, 李鹤年, 简而智, 萧健. 高能带电粒子直接产生电子对.  , doi: 10.7498/aps.17.263
计量
  • 文章访问数:  23
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-20

/

返回文章
返回
Baidu
map