搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

射频容性耦合等离子体中下极板凹槽对尘埃颗粒集体行为的影响研究

邓锐 黄渝峰 张逸凡 张莹莹 宋远红

引用本文:
Citation:

射频容性耦合等离子体中下极板凹槽对尘埃颗粒集体行为的影响研究

邓锐, 黄渝峰, 张逸凡, 张莹莹, 宋远红

Influence of Lower Electrode Groove on Collective Behavior of Dust Particles in Radio-Frequency Capacitively Coupled Plasmas

DENG Rui, HUANG Yufeng, ZHANG Yifan, ZHANG Yingying, SONG Yuanhong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 在射频容性耦合尘埃等离子体放电中,下极板凹槽通过影响鞘层里的电势分布,进而对尘埃颗粒的集体行为产生显著影响。实验中通过在腔室内撒入微米级直径的尘埃颗粒,观察到其在下电极凹槽势阱上方分层出现,整体呈“碗状”云分布。尘埃云的体积大小随射频功率和放电气压的变化而变化。尘埃空洞在每层尘埃颗粒的中心出现,其直径大小和变化受尘埃颗粒数量,射频功率和放电气压影响。此外,基于流体模型和尘埃粒子模型建立混合模型,模拟发现尘埃颗粒的集体行为主要由其所受的轴向合力(考虑轴向电场力、离子拖拽力和重力)和径向合力(考虑径向电场力和离子拖拽力)决定。实验发现,通过在射频电极施加负直流偏压,尘埃颗粒悬浮高度先增加后下降,悬浮高度的变化能够较直观地反映等离子体放电从α-γ模式的转变。
    In a capacitively coupled radio-frequency dusty plasma discharge, the groove structure on the lower electrode significantly modulates the electric potential distribution within the sheath region, thereby strongly influencing the collective dynamics of dust particles. Experimentally, when micrometer-sized dust particles are injected into the discharge chamber, a clearly stratified suspension forms above the potential well created by the electrode groove, exhibiting a characteristic 'bowl-shaped' cloud structure. The macroscopic dimensions of the dust cloud, such as its vertical thickness and radial expansion, vary noticeably with changes in RF power and gas pressure. Moreover, a dust void is observed in the central region of each particle layer; its diameter and evolution are jointly determined by the dust particle density, RF power, and gas pressure. A hybrid model, which couples a fluid description with the equation of motion for dust particles, indicates that the suspension and arrangement of dust particles are predominantly determined by a balance of axial and radial forces. The axial forces include the electrostatic force from the sheath electric field, the ion drag force, and gravity, while the radial forces primarily arise from the radial component of the electric field and the corresponding ion drag force. Further experimental results show that applying a negative DC bias to the RF electrode causes the levitation height of the dust particles to first increase and then decrease with increasing bias voltage, exhibiting a non-monotonic trend. This shift in levitation height can be regarded as a clear indicator of the transition of the plasma discharge from the α-mode to the γ-mode.
  • [1]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges & Materials Processing 11 800

    [2]

    Selwyn G S, Singh J, Bennett R S 1989 J. Vac. Sci. Technol. A 7 2758

    [3]

    Wood B P, Lieberman M A, Lichtenberg A J 1991 IEEE Transactions on Plasma Science 19 619

    [4]

    Wang K, Huang D, Feng Y 2019 Phys. Rev. E 99 063206

    [5]

    Fedoseev A V, Sukhinin G I, Dosbolayev M K, Ramazanov T S 2015 Phys. Rev. E 92 023106

    [6]

    Melzer A 2019 Physics of Dusty Plasmas:An Introduction (Berlin:Springer) p40

    [7]

    Vasiliev M M, Petrov O F, Alekseevskaya A A, Ivanov, A S Vasilieva, E V 2020 Molecules 25 3375

    [8]

    Chu J H, Lin I 1994 Phys. Rev. Lett 72 4009

    [9]

    Caplan M E, Yaacoub D 2024 Phys. Rev. Lett 133 135301

    [10]

    Hariprasad M G, Bandyopadhyay P, Arora G, Sen, A 2018 Physics of Plasmas 25 123704

    [11]

    Carmichael C, Ortiz J M, Adamson P, Matthews L, Hyde T 2024 Phys. Rev. E 110 25205

    [12]

    van de Wetering F M J H, Brooimans R J C, Nijdam S, Beckers J, Kroesen G M W 2015 J. Phys. D:Appl. Phys 48 35204

    [13]

    Bailung Y, Deka T, Boruah A, Sharma S K, Pal A R, Chutia J, Bailung H Physics of Plasmas 25 053705

    [14]

    Knapek C A, Mohr D P, Huber P 2024 Physics of Plasmas 31 063702

    [15]

    Mulsow M, Himpel M, Melzer A 2017 Physics of Plasmas 24 123704

    [16]

    Douglass A, Land V, Qiao K, Matthews L, Hyde T 2012 Physics of Plasmas 19 013707

    [17]

    Lin J, Hashimoto K, Togashi R, Utegenov A, Henault M, Takahashi K 2019 Journal of Applied Physics 126 043302

    [18]

    Iwashita S, Uchida G, Schulze J, Schüngel E, Hartmann P, Shiratani M, Donkó Z, Czarnetzki U 2012 Plasma Sources Sci. Technol 21 032001

    [19]

    Iwashita S, Schüngel E, Schulze J, Hartmann P, Donkó Z, Uchida G, Koga K, Shiratani M, Czarnetzki U 2013 J. Phys. D:Appl. Phys 46 245202

    [20]

    Chen Z Y, Song X Y, Liu Y, Tang, H Y, Huang F 2020 IEEE Transactions on Plasma Science 48 1283

    [21]

    Takahashi K, Totsuji H 2019 IEEE Transactions on Plasma Science 47 4213

    [22]

    Farokhi B, Hameditabar A 2012 Chinese Physics Letters 29 25201

    [23]

    Yaroshenko V V, Khrapak S A, Morfill G E 2013 Physics of Plasmas 20 043703

    [24]

    Jeong J, Kim Y G, Lee J, Kim Y 2024 Annual SEMI Advanced Semiconductor Manufacturing Conference Albany, New York, May 13-16, 2024 p1

    [25]

    Batryshev D, Yerlanuly Y, Gabdullin M, Ramazanov T 2019 IEEE Transactions on Plasma Science 47 4209

    [26]

    He Y F, Ai B Q, Dai C X, Song C, Wang R Q, Sun W T, Liu F C, Feng Y 2020 Phys. Rev. Lett 124 75001

    [27]

    Ivanov A S, Pal A F, Ryabinkin A N, Serov A O, Starostin A V 2015 Russian Journal of General Chemistry 10 1134

    [28]

    Doyle S J, Lafleur T, Gibson A R, Tian P, Kushner M, Dedrick J 2017 Plasma Sources Sci. Technol 26 125005

    [29]

    Wang L, Hartmann P, Donko Z, Song Y H, Schulze J 2021 J. Vac. Sci. Technol 39 063004

    [30]

    Piejak R B, Al-Kuzee J, Braithwaite N S J 2005 Plasma Sources Sci. Technol 14 734

    [31]

    Liu G H, Liu Y X, Wen D Q, Wang Y N 2015 Plasma Sources Sci. Technol 24 034006

    [32]

    Duan M Y, Jia W Z, Zhang Y Y, Zhang Y F, Song Y H 2023 Acta Phys. Sin. 72 165202 段蒙悦, 贾文柱, 张莹莹, 张逸凡, 宋远红 2023 72 165202

    [33]

    Gallagher A, Howling A A, Hollenstein C 2002 J. Appl. Phys 91 5571

    [34]

    Graves D B, Daugherty J E, Kilgore M D, Porteous R K 1994 Plasma Sources Sci. Technol 3 433

    [35]

    De Bleecker K,Bogaert A,Goedheer W 2006 Phys. Rev. E 73 026405

    [36]

    Wang K, Huang D, Feng Y 2019 Phys. Rev. E 99 063206

    [37]

    Schweigert I V, Alexandrov A L, Ariskin D A 2014 Plasma Chemistry and Plasma Processing 34 671-702

    [38]

    Dahiya R P, Paeva G V, Stoffels W W, Stoffels E, Kroesen G M W, Avinash K, Bhattacharjee A 2002 Phys. Rev. Lett 89 125001

    [39]

    Schulze J, Donkó Z, Derzsi A 2015 Plasma Sources Sci. Technol 24 015019

    [40]

    Yamaguchi T, Komuro T, Koshimizu C, Takeda K, Kondo H, Ishikawa K, Sekine M, Hori M 2011 J. Phys. D:Appl. Phys 45 025203

    [41]

    Liu G H, Liu Y X, Bai L S, Zhao K, Wang Y N 2018 Physics of Plasmas 25 023515

    [42]

    Schulze J, Schüngel E, Donkó Z, Czarnetzki U 2010 J. Phys. D:Appl. Phys 43 124016

    [43]

    Xiang Y J, Wang X K, Liu Y X, Wang Y N 2024 Plasma Science and Technology 26 55401

  • [1] 赵悦悦, 缪阳, 杨唯, 杜诚然. 尘埃颗粒对低气压射频等离子体中非局域动理学的影响.  , doi: 10.7498/aps.74.20251096
    [2] 陈楚戈, 石顶峰, 丛洲洋, 黄安, 许振宇, 聂伟, 夏晖晖, 郭浩帆. 基于自适应区域权重混合模型的燃烧场温度和气体浓度二维重建方法.  , doi: 10.7498/aps.74.20250988
    [3] 佟磊, 赵明亮, 张钰如, 宋远红, 王友年. 带有射频偏压源的感性耦合Ar/O2/Cl2等离子体放电的混合模拟研究.  , doi: 10.7498/aps.73.20231369
    [4] 陈伟, 黄海, 杨利霞, 薄勇, 黄志祥. 基于Fokker-Planck-Landau碰撞模型的非均匀尘埃等离子体目标散射特性.  , doi: 10.7498/aps.72.20222113
    [5] 段蒙悦, 贾文柱, 张莹莹, 张逸凡, 宋远红. 容性耦合硅烷等离子体尘埃颗粒空间分布的二维流体模拟.  , doi: 10.7498/aps.72.20230686
    [6] 操礼阳, 马晓萍, 邓丽丽, 卢曼婷, 辛煜. 射频容性耦合Ar/O2等离子体的轴向诊断.  , doi: 10.7498/aps.70.20202113
    [7] 张钰如, 高飞, 王友年. 低气压感性耦合等离子体源模拟研究进展.  , doi: 10.7498/aps.70.20202247
    [8] 王振兴, 曹志远, 李瑞, 陈峰, 孙丽琼, 耿英三, 王建华. 纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟.  , doi: 10.7498/aps.70.20201701
    [9] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断.  , doi: 10.7498/aps.69.20191864
    [10] 孙俊超, 张宗国, 董焕河, 杨红卫. 尘埃等离子体中的分数阶模型及其Lump解.  , doi: 10.7498/aps.68.20191045
    [11] 杨郁, 唐成双, 赵一帆, 虞一青, 辛煜. 甚高频激发的容性耦合Ar+O2等离子体电负特性研究.  , doi: 10.7498/aps.66.185202
    [12] 杨成, 周昕. 液态水中的多种局域结构.  , doi: 10.7498/aps.65.176501
    [13] 伍飞飞, 廖瑞金, 杨丽君, 刘兴华, 汪可, 周之. 棒-板电极直流负电晕放电特里切尔脉冲的微观过程分析.  , doi: 10.7498/aps.62.115201
    [14] 王晶, 马瑞玲, 王龙, 孟俊敏. 采用混合模型数值模拟从深海到浅海内波的传播.  , doi: 10.7498/aps.61.064701
    [15] 廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾. 大气压直流正电晕放电暂态空间电荷分布仿真研究.  , doi: 10.7498/aps.61.245201
    [16] 柯博, 汪磊, 倪添灵, 丁芳, 陈牧笛, 周海洋, 温晓辉, 朱晓东. 电子回旋共振-射频双等离子体沉积氧化硅薄膜过程中的射频偏压效应.  , doi: 10.7498/aps.59.1338
    [17] 袁强华, 辛 煜, 黄晓江, 孙 恺, 宁兆元. 13.56 MHz 低频功率对60 MHz射频容性耦合等离子体的电特性的影响.  , doi: 10.7498/aps.57.7038
    [18] 吴 静, 张鹏云, 宋巧丽, 张家良, 王德真. 反应等离子体中尘埃空洞形成的实验研究.  , doi: 10.7498/aps.54.4794
    [19] 朱武飚, 王友年, 邓新禄, 马腾才. 负偏压射频放电过程的流体力学模拟.  , doi: 10.7498/aps.45.1138
    [20] 许政一, 朱镛, 张道范, 李晨曦. 离子导体在直流偏压作用下的介电特性.  , doi: 10.7498/aps.30.1576
计量
  • 文章访问数:  49
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-10

/

返回文章
返回
Baidu
map