搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单片有源像素传感器的探测模块测试研究

杨生辉 董明义 渠超越 田兴成 董静 吴冶 马骁妍 章红宇 江晓山 欧阳群 李岚坤 郑国恒

引用本文:
Citation:

基于单片有源像素传感器的探测模块测试研究

杨生辉, 董明义, 渠超越, 田兴成, 董静, 吴冶, 马骁妍, 章红宇, 江晓山, 欧阳群, 李岚坤, 郑国恒

Test study of detector modules based on monolithic active pixel sensor

Yang Sheng-Hui, Dong Ming-Yi, Qu Chao-Yue, Tian Xing-Cheng, Dong Jing, Wu Ye, Ma Xiao-Yan, Zhang Hong-Yu, Jiang Xiao-Shan, Ouyang Qun, Li Lan-Kun, Zheng Guo-Heng
cstr: 32037.14.aps.70.20210464
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 硅像素探测器因具有优异的空间分辨率、极高的耐计数能力和较低的功耗等优点, 近年来已被广泛应用于高能对撞机实验的顶点探测器和内径迹探测器. 基于MIMOSA28芯片的硅像素探测器研究是北京谱仪Ⅲ漂移室内室的升级预研方案之一, 该方案计划建造一个漂移室内室1/10规模的模型. 探测模块是该模型的基本探测单元. 为了对探测模块的性能进行研究, 搭建了实验室测试系统. 该系统主要由五层探测模块、读出电子学系统以及数据获取系统组成. 本文围绕带有触发标记的连续数据读出方法的实现、探测模块的噪声水平和放射源响应测试以及击中位置重建算法研究展开. 测试结果验证了探测模块工作性能良好, 触发读出逻辑正确, 而且重建算法准确有效, 为后续探测模块性能的进一步研究奠定了基础.
    Silicon pixel detectors are widely used as vertex detectors or inner trackers in high-energy collider experiments because of their excellent spatial resolution, extremely high counting capability and low power consumption. The study of the silicon pixel detector based on the monolithic active pixel sensor (MAPS) is one of the R&D schemes for upgrading the inner chamber of the Beijing spectrometer Ⅲ (BESⅢ) drift chamber (MDC). It is planned to build a 1/10 scale prototype of the inner chamber. The detector module is the basic component of the prototype, consisting of ten MIMOSA28 chips thinned to 50 μm, a flexible cable and a carbon fiber support. In order to study the performance of the module, a test system is set up. The system is composed mainly of five-layer modules, readout electronics and data acquisition system. This article focuses on the realization of the continuous data readout method with trigger marking function, the measurement of the noise level of the detector modules, the module response test by a radioactive source, and the study of the hit reconstruction algorithm. The test of trigger readout logic verifies the correctness of the continuous readout method with trigger marking. It can be concluded that analyzing consecutive three frames data (the previous frame, the current frame and the next frame) of each valid trigger will not lead to effective hit data loss. The noise level of the detector module is tested. The results show that the fixed pattern noise (FPN) is 0.253 mV, and the temporal noise (TN) is 1.65 mV. The fake hit rate is less than $ {10}^{-5} $ that can be ignored when the chip threshold is set to be above 4σ of noise. Two algorithms for hit reconstruction (i.e. adjacent method and comparison method) are studied and compared. When the average number of fired pixels caused by each hit is 2.562 and more than four hits in each frame of data, the adjacent method can find all of the fired pixels to be faster. During the test, the detector module and the electronics are proved to work well. These studies lay a foundation for further testing the performance of the detector prototype.
      通信作者: 董明义, dongmy@ihep.ac.cn
    • 基金项目: 国家自然科学基金(批准号: U1232202, 11875274)资助的课题
      Corresponding author: Dong Ming-Yi, dongmy@ihep.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1232202, 11875274)
    [1]

    Weste N H E, Eshraghian K 1985 NASA STI/Recon Technical Report A 85 47028

    [2]

    MacMillen D, Camposano R, Hill D, Williams T W 2000 IEEE Trans.Comput.Aided Des. Integr. Circuits Syst. 19 1428Google Scholar

    [3]

    Greiner L, Anderssen E, Matis H S, Ritter H G, Schambach J, Silber J, Stezelberger T, Sun X, Szelezniak M, Thomas J, Videbaek F, Vu C, Wieman H 2011 Nucl. Instrum. Meth. A 650 68Google Scholar

    [4]

    Contin G, Anderssen E, Greiner L, Schambach J, Silber J, Stezelberger T, Sun X, Szelezniak M, Vu C, Wieman H, Woodmansee S 2015 JINST 10 C03026Google Scholar

    [5]

    Brüning O, Burkhardt H, Myers S 2012 Prog. Part. Nucl. Phys. 67 705Google Scholar

    [6]

    Schukraft J 2012 Philos. Trans. R. Soc. London, Ser. A 370 917Google Scholar

    [7]

    Mager M 2016 Nucl. Instrum. Meth. A 824 434Google Scholar

    [8]

    Keil M 2015 JINST 10 C03012Google Scholar

    [9]

    Zhou Y, Lu Y P, Wu Z G, Shi T, Ju X D, Dong J, Zhu H B, Ouyang Q 2020 Nucl. Instrum. Meth. A 980 164427Google Scholar

    [10]

    Wei W, Zhang J, Ning Z, Lu Y P, Fan L, Li H S, Jiang X S, Lan A K, Ou-Yang Q, Wang Z, Zhu K J, Chen Y B, Liu P 2016 Nucl. Instrum. Meth. A 835 169Google Scholar

    [11]

    Zhang C 2009 Chin. Phys. C 33 60Google Scholar

    [12]

    Harris F A 2006 Nucl. Phys. B 162 345Google Scholar

    [13]

    Hu G C, Baudot J, Bertolone G, et al. 2010 Nucl. Instrum. Meth. A 623 480Google Scholar

    [14]

    Contin G, Greiner L, Schambach J, Szelezniak M, Anderssen E, Bell J, Cepeda M, Johnson T, Qiu H, Ritter H G, Silber J, Stezelberger T, Sun X M, Tran C, Vu C, Wieman H, Wilson K, Witharm R, Woodmansee S, Wolf J 2018 Nucl. Instrum. Meth. A 907 60Google Scholar

    [15]

    Ultimate user manual, Himmi A, Doziere G, Bertolone G, Dulinski W, Coll-edani C, Dorokhov A, Hu Ch, Morel F, Pham H, Valin I, Wang J http://www.iphc.cnrs.fr/IMG/pdf/Ultimate_UserManual.pdf [2021-3-9]

    [16]

    Valin I, Hu-Guo C, Baudot J, Bertolone G, Besson A, Colledani C, Clau G, Dorokhov A, Dozière G, Dulinski W, Gelin M, Goffe M, Himmi A, Jaaskel-ainen K, Morel F, Pham H, Santos C, Senyukov S, Specht M, Voutsinas G, Wang J, Winter M 2012 JINST 7 C01102Google Scholar

    [17]

    Highland V L 1975 Nucl. Instrum. Meth. 129 497Google Scholar

    [18]

    Szelezniak M A, Deptuch G W, Guilloux F, Heini S, Himmi A 2007 IEEE J. Sensor 7 137Google Scholar

    [19]

    7 Series FPGAs Data Sheet: Overview, Xinlinx https://www.xilinx.com/support/documentation/data_sheets/ds180_7 Series_Overview.pdf[2021-4-19]

    [20]

    Mathieson K, Passmore M S, Seller P, Prydderch M L, O’Shea V, Bates R L, Smith K M, Rahman M 2002 Nucl. Instrum. Meth. A 487 113Google Scholar

  • 图 1  实验室测试系统装置示意图

    Fig. 1.  Schematic of the experimental setup in the laboratory.

    图 2  探测模块结构

    Fig. 2.  Structure of the detector module.

    图 3  探测模块的数据经FPGA处理后的格式

    Fig. 3.  Format of the data of the detector module processed by FPGA.

    图 4  连续读出流程

    Fig. 4.  Process of continuous readout.

    图 5  每次触发模块2—模块5对应的数据帧号与模块1对应的数据帧号的差值

    Fig. 5.  Difference of the frame number between module 2– module 5 and module1 corresponding to the same event (trigger).

    图 6  探测模块的噪声水平(1 ADC=0.25 mV) (a) 传输曲线的Mean值分布(FPN为1.01067 ADC, 转换成电压值为0.253 mV); (b) 传输曲线的Sigma值分布(TN为6.60172 ADC, 转换成电压值为1.65 mV)

    Fig. 6.  Noise level of detector module (1 ADC unit = 0.25 mV): (a) Mean distribution of transmission curve (FPN is 1.01067 ADC, converted into the voltage is 0.253 mV); (b) Sigma distribution of transmission curve (TN is 1.01067 ADC, converted into the voltage is 1.65 mV).

    图 7  误击中率随阈值的变化

    Fig. 7.  FHR as a function of the threshold.

    图 8  五层探测模块击中挑选结果(右侧色温表给出像素被击中的次数)

    Fig. 8.  Hit selection of the five-layer detection module (The rainbow indicates the number of times a pixel being hit).

    图 9  相邻法实现流程图

    Fig. 9.  Flow chart of adjacent method.

    图 10  比较法中相邻像素的四种标记情况

    Fig. 10.  Four marking situations of adjacent pixels in the comparison method.

    图 11  90Sr放射源测试得到芯片上cluster size的分布

    Fig. 11.  Cluster size distribution on the chip tested by 90Sr source.

    表 1  两种算法的复杂度比较

    Table 1.  Comparison of the complexity of the two algorithms.

    相邻法比较法
    循环次数$4 \times M \times N$$({ { {M^2} \times {N^2} - M \times N} })/{2}$
    时间复杂度T(N)O(N)O(N2)
    下载: 导出CSV
    Baidu
  • [1]

    Weste N H E, Eshraghian K 1985 NASA STI/Recon Technical Report A 85 47028

    [2]

    MacMillen D, Camposano R, Hill D, Williams T W 2000 IEEE Trans.Comput.Aided Des. Integr. Circuits Syst. 19 1428Google Scholar

    [3]

    Greiner L, Anderssen E, Matis H S, Ritter H G, Schambach J, Silber J, Stezelberger T, Sun X, Szelezniak M, Thomas J, Videbaek F, Vu C, Wieman H 2011 Nucl. Instrum. Meth. A 650 68Google Scholar

    [4]

    Contin G, Anderssen E, Greiner L, Schambach J, Silber J, Stezelberger T, Sun X, Szelezniak M, Vu C, Wieman H, Woodmansee S 2015 JINST 10 C03026Google Scholar

    [5]

    Brüning O, Burkhardt H, Myers S 2012 Prog. Part. Nucl. Phys. 67 705Google Scholar

    [6]

    Schukraft J 2012 Philos. Trans. R. Soc. London, Ser. A 370 917Google Scholar

    [7]

    Mager M 2016 Nucl. Instrum. Meth. A 824 434Google Scholar

    [8]

    Keil M 2015 JINST 10 C03012Google Scholar

    [9]

    Zhou Y, Lu Y P, Wu Z G, Shi T, Ju X D, Dong J, Zhu H B, Ouyang Q 2020 Nucl. Instrum. Meth. A 980 164427Google Scholar

    [10]

    Wei W, Zhang J, Ning Z, Lu Y P, Fan L, Li H S, Jiang X S, Lan A K, Ou-Yang Q, Wang Z, Zhu K J, Chen Y B, Liu P 2016 Nucl. Instrum. Meth. A 835 169Google Scholar

    [11]

    Zhang C 2009 Chin. Phys. C 33 60Google Scholar

    [12]

    Harris F A 2006 Nucl. Phys. B 162 345Google Scholar

    [13]

    Hu G C, Baudot J, Bertolone G, et al. 2010 Nucl. Instrum. Meth. A 623 480Google Scholar

    [14]

    Contin G, Greiner L, Schambach J, Szelezniak M, Anderssen E, Bell J, Cepeda M, Johnson T, Qiu H, Ritter H G, Silber J, Stezelberger T, Sun X M, Tran C, Vu C, Wieman H, Wilson K, Witharm R, Woodmansee S, Wolf J 2018 Nucl. Instrum. Meth. A 907 60Google Scholar

    [15]

    Ultimate user manual, Himmi A, Doziere G, Bertolone G, Dulinski W, Coll-edani C, Dorokhov A, Hu Ch, Morel F, Pham H, Valin I, Wang J http://www.iphc.cnrs.fr/IMG/pdf/Ultimate_UserManual.pdf [2021-3-9]

    [16]

    Valin I, Hu-Guo C, Baudot J, Bertolone G, Besson A, Colledani C, Clau G, Dorokhov A, Dozière G, Dulinski W, Gelin M, Goffe M, Himmi A, Jaaskel-ainen K, Morel F, Pham H, Santos C, Senyukov S, Specht M, Voutsinas G, Wang J, Winter M 2012 JINST 7 C01102Google Scholar

    [17]

    Highland V L 1975 Nucl. Instrum. Meth. 129 497Google Scholar

    [18]

    Szelezniak M A, Deptuch G W, Guilloux F, Heini S, Himmi A 2007 IEEE J. Sensor 7 137Google Scholar

    [19]

    7 Series FPGAs Data Sheet: Overview, Xinlinx https://www.xilinx.com/support/documentation/data_sheets/ds180_7 Series_Overview.pdf[2021-4-19]

    [20]

    Mathieson K, Passmore M S, Seller P, Prydderch M L, O’Shea V, Bates R L, Smith K M, Rahman M 2002 Nucl. Instrum. Meth. A 487 113Google Scholar

计量
  • 文章访问数:  7886
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-10
  • 修回日期:  2021-04-16
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回
Baidu
map