搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

暗态多极赝局域等离子模式的太赫兹涡旋光激发

葛一凡 吴毅萍 臧小飞 袁英豪 陈麟

引用本文:
Citation:

暗态多极赝局域等离子模式的太赫兹涡旋光激发

葛一凡, 吴毅萍, 臧小飞, 袁英豪, 陈麟

Interaction between spoof localized surface plasmon and terahertz vortex beam

Ge Yi-Fan, Wu Yi-Ping, Zang Xiao-Fei, Yuan Ying-Hao, Chen Lin
cstr: 32037.14.aps.69.20200695
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 理论分析和实验验证了太赫兹涡旋光与带有周期性亚波长金属褶皱圆盘中暗态多极赝局域等离子模式的相互作用. 研究结果表明, 携带不同轨道角动量和自旋角动量的太赫兹涡旋光可以决定最终激发出的太赫兹暗态多极等离子模式, 此结果和光频段的理论分析一致. 利用太赫兹近场扫描方法对涡旋光的自旋和轨道角动量与暗态多极等离子模式的对应关系进行了实验论证, 实验结果与理论仿真符合较好. 研究成果将对太赫兹物理、等离子体以及成像领域研究起到一定的促进作用.
    We theoretically and experimentally investigate a method of exciting multipole plasmons, including terahertz dark spoof localized surface plasmon (Spoof-LSP) modes, by using normally incident terahertz vortex beam. The vortex beam with angular intensity profile and phase singularities, has well-defined angular momentum which can be decomposed into the polarization-state-related spin angular momentum (SAM) for characterizing the spin feature of photon, and the helical-wavefront-related orbital angular momentum (OAM) that is characterized by an integer $ (l) $, called the topological charge. By illuminating terahertz vortex beam on the metallic disk with periodic subwavelength grooves normally, we find that the terahertz dark multipole plasmons can be excited by the terahertz vortex beam carrying different OAM and SAM. We analyze the correspondence between the spin and orbital angular momentum of vortex beam and the excited dark multipolar plasmon modes. In the experiment, a terahertz stepped spiral phase plate (SPP) with high transmission and low dispersion based on the Tsurupica olefin polymer is developed and the stepped SPP can generate a terahertz vortex beam having a topological charge of 1. Then, we further study the excitation of dark multipolar Spoof-LSPs by utilizing the stepped SPP in combination with the near-field scanning terahertz microscopy. The collimated terahertz wave, which is radiated from a 100 fs (λ = 780 nm) laser pulse pumped photoconductive antenna emitter, is converted into terahertz circular polarized light (CPL) which can carry SAM by the combination of the quarter wave plate and the polarizer, and then terahertz CPL impinges on the stepped SPP, producing the terahertz vortex beam which can carry OAM. The spatial two-dimensional electric field distribution is collected in steps of 0.02 mm along the x-direction and y-direction by a commercial terahertz near-field probe which is located close (≈ 10 μm) to the one side of polyimide film by three-dimensional electric translation stage and a microscope (FORTUNE TECHPLOGY FT-FH1080). The experimental results are in good agreement with simulations. We believe that our method will open the way for detailed research on the terahertz physics, plasma and imaging fields.
      通信作者: 陈麟, linchen@usst.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFF01013003)、国家自然科学基金(批准号: 61671302)、上海市曙光计划(批准号: 18SG44)和2020年度上海理工大学教师教学发展研究项目(批准号: CFTD203008)资助的课题
      Corresponding author: Chen Lin, linchen@usst.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFF01013003), the National Natural Science Foundation of China (Grant No. 61671302), the Shuguang Program of Shanghai, China (Grant No. 18SG44), and the 2020 Faculty Teaching Development Research Project of USST, China (Grant No. CFTD203008)
    [1]

    Maier S A 2007 Plasmoincs: Fundamentals and Applications (Vol. 52) (Berlin: Springer) p49

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [3]

    Evlyukhin A B, Reinhardt C, Chichkov B N 2011 Phys. Rev. B 84 235429Google Scholar

    [4]

    Oldenburg S J, Jackson J B, Westcott S L, Halas N J 1999 Appl. Phys. Lett. 75 2897Google Scholar

    [5]

    Hao F, Larsson E M, Ali T A., Sutherland D S, Nordlander P 2008 Chem. Phys. Lett. 458 262Google Scholar

    [6]

    Hao F, Nordlander P, Sonnefraud Y, Dorpe P V, Maier S A 2009 ACS Nano 3 643Google Scholar

    [7]

    Habteyes T G, Dhuey S, Cabrini S, Schuck P J, Leone S R 2011 Nano Lett. 11 1819Google Scholar

    [8]

    Chen L, Zhu Y M, Zang X F, Cai B, Li Z, Xie L, Zhuang S L 2013 Light Sci. Appl. 2 e60Google Scholar

    [9]

    Chen L, Ge Y F, Zang X F, Xie J Y, Ding L, Balakin A V, Shkurinov A P, Zhu Y M 2019 IEEE Trans. Terahertz Sci. Technol. 9 643Google Scholar

    [10]

    Pors A, Moreno E, Martin-Moreno L, Pendry J B, Garcia-Vidal F J 2012 Phys. Rev. Lett. 108 223905Google Scholar

    [11]

    Shen X P, Cui T J 2014 Laser Photonics Rev. 8 137Google Scholar

    [12]

    Chen L, Wei Y M, Zang X F, Zhu Y M, Zhuang S L 2016 Sci. Rep. 6 22027Google Scholar

    [13]

    Chen L, Xu N N, Singh L, Cui T J, Singh R J, Zhu S L, Zhang W L 2017 Adv. Opt. Mater. 5 1600960Google Scholar

    [14]

    Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front. Inf. Technol. Electron. 20 591Google Scholar

    [15]

    Zhou J, Chen L, Sun Q Y, Liao D G, Ding L, Balakin A V, Shkurinov A P, Xie J Y, Zang X F, Cheng Q Q, Zhu Y M 2020 Appl. Phys. Express 13 012014Google Scholar

    [16]

    Allen L, Beijersbegen M W, Spreeum R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [17]

    胡志健 2010 博士学位论文 (天津: 南开大学)

    Hu Z J 2010 Ph. D. Dissertation. (Tianjing: Nankai University) (in Chinese)

    [18]

    Sakai K, Nomura K, Yamamoto T, Sasaki K 2015 Sci. Rep. 5 8431Google Scholar

    [19]

    Morimoto S, Arikawa T, Blanchard F, Sakai K, Sasaki K, Tanaka K 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) Copenhagen, The Kingdom of Denmark, 2016 pp1, 2

    [20]

    Arikawa T, Morimoto S, Hiraoka T, Blanchard F, Sakai K, Sasaki K, Tanaka K 2018 Conference on Lasers and Electro-Optics (CLEO) San Jose, USA, 2018 pp1, 2

    [21]

    Zang X F, Zhu Y M, Mao C X, Xu W W, Ding H Z, Xie J Y, Cheng Q Q, Chen L, Peng Y, Hu Q, Gu M, Zhuang S L 2019 Adv. Opt. Mater. 7 1801328Google Scholar

    [22]

    Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161Google Scholar

    [23]

    Milione G, Evans S, Nolan D A, Alfano R R 2012 Phys. Rev. Lett. 108 190401Google Scholar

    [24]

    Miyamoto K, Kang B J, Kim W T, Sasaki Y, Niinomi H, Suizu K, Rotermund F, Omatsu T 2016 Sci. Rep. 6 38880Google Scholar

    [25]

    Miyamoto K, Suizu K, Akiba T, Omatsu T 2014 Appl. Phys. Lett. 104 261104Google Scholar

  • 图 1  太赫兹涡旋光的电场、电场矢量和相位分布仿真图

    Fig. 1.  Simulation of electric field, the vector of electric field and phase distribution of terahertz vortex beam.

    图 2  仿真结构示意图 (a), (b)带有周期性亚波长槽的金属圆盘; (c)太赫兹涡旋光垂直入射金属圆盘

    Fig. 2.  Schematic diagram of simulation structure: (a), (b) Metal disk with subwavelength periodic grooves; (c) the vertical incidence terahertz vortex beam to the metal disc.

    图 3  监视点处的强度光谱

    Fig. 3.  Intensity spectra at the monitoring point.

    图 4  太赫兹涡旋光穿透结构后的电场仿真图

    Fig. 4.  Simulation of electric field after terahertz vortex beam penetrates the structure.

    图 5  透射式阶梯型SPP (a)结构示意图, 其中$ \lambda = $ 500 μm, 阶梯总数量$ N=18 $, 总厚度$ h=4\;{\rm{mm}} $, 基底厚度为$ {h}_{0}\approx $ 961.54 μm, 旋转方位角$\phi =20^ \circ$; (b) 1阶SPP的实物图

    Fig. 5.  Transmissive stepped SPP: (a) Schematic of the structure, where the wavelength $ \lambda = $ 500 μm, the total number of steps $ N=18 $, the total thickness $ h=4\;{\rm{mm}} $, the base thickness $ {h}_{0}\approx $ 961.54 μm, the rotation azimuth $\phi =20^ \circ$; (b) the physical map of SPP.

    图 6  实验测量装置图和样品实物图(插图)

    Fig. 6.  Experimental measurement device diagram and the physical map of sample (inserted figure).

    图 7  实验测量装置图

    Fig. 7.  Experimental measurement device diagram.

    图 8  太赫兹涡旋光穿透样品后的电场实验图 (a)$ \left(0, \;1\right) $的组合; (b)$ \left(1, \;1\right) $的组合

    Fig. 8.  Experimental diagram of electric field and phase after terahertz vortex beam penetrates the structure: (a) Combination of $ \left(0, \;1\right) $; (b) combination of $ \left(1, \;1\right) $.

    表 1  Spoof-LSPs模式和角动量的关系

    Table 1.  Relationship between Spoof-LSPs mode and angular momentum.

    lsJSpoof-LSPs模式
    213六极子
    112四极子
    –10
    011偶极子
    下载: 导出CSV
    Baidu
  • [1]

    Maier S A 2007 Plasmoincs: Fundamentals and Applications (Vol. 52) (Berlin: Springer) p49

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [3]

    Evlyukhin A B, Reinhardt C, Chichkov B N 2011 Phys. Rev. B 84 235429Google Scholar

    [4]

    Oldenburg S J, Jackson J B, Westcott S L, Halas N J 1999 Appl. Phys. Lett. 75 2897Google Scholar

    [5]

    Hao F, Larsson E M, Ali T A., Sutherland D S, Nordlander P 2008 Chem. Phys. Lett. 458 262Google Scholar

    [6]

    Hao F, Nordlander P, Sonnefraud Y, Dorpe P V, Maier S A 2009 ACS Nano 3 643Google Scholar

    [7]

    Habteyes T G, Dhuey S, Cabrini S, Schuck P J, Leone S R 2011 Nano Lett. 11 1819Google Scholar

    [8]

    Chen L, Zhu Y M, Zang X F, Cai B, Li Z, Xie L, Zhuang S L 2013 Light Sci. Appl. 2 e60Google Scholar

    [9]

    Chen L, Ge Y F, Zang X F, Xie J Y, Ding L, Balakin A V, Shkurinov A P, Zhu Y M 2019 IEEE Trans. Terahertz Sci. Technol. 9 643Google Scholar

    [10]

    Pors A, Moreno E, Martin-Moreno L, Pendry J B, Garcia-Vidal F J 2012 Phys. Rev. Lett. 108 223905Google Scholar

    [11]

    Shen X P, Cui T J 2014 Laser Photonics Rev. 8 137Google Scholar

    [12]

    Chen L, Wei Y M, Zang X F, Zhu Y M, Zhuang S L 2016 Sci. Rep. 6 22027Google Scholar

    [13]

    Chen L, Xu N N, Singh L, Cui T J, Singh R J, Zhu S L, Zhang W L 2017 Adv. Opt. Mater. 5 1600960Google Scholar

    [14]

    Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front. Inf. Technol. Electron. 20 591Google Scholar

    [15]

    Zhou J, Chen L, Sun Q Y, Liao D G, Ding L, Balakin A V, Shkurinov A P, Xie J Y, Zang X F, Cheng Q Q, Zhu Y M 2020 Appl. Phys. Express 13 012014Google Scholar

    [16]

    Allen L, Beijersbegen M W, Spreeum R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [17]

    胡志健 2010 博士学位论文 (天津: 南开大学)

    Hu Z J 2010 Ph. D. Dissertation. (Tianjing: Nankai University) (in Chinese)

    [18]

    Sakai K, Nomura K, Yamamoto T, Sasaki K 2015 Sci. Rep. 5 8431Google Scholar

    [19]

    Morimoto S, Arikawa T, Blanchard F, Sakai K, Sasaki K, Tanaka K 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) Copenhagen, The Kingdom of Denmark, 2016 pp1, 2

    [20]

    Arikawa T, Morimoto S, Hiraoka T, Blanchard F, Sakai K, Sasaki K, Tanaka K 2018 Conference on Lasers and Electro-Optics (CLEO) San Jose, USA, 2018 pp1, 2

    [21]

    Zang X F, Zhu Y M, Mao C X, Xu W W, Ding H Z, Xie J Y, Cheng Q Q, Chen L, Peng Y, Hu Q, Gu M, Zhuang S L 2019 Adv. Opt. Mater. 7 1801328Google Scholar

    [22]

    Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161Google Scholar

    [23]

    Milione G, Evans S, Nolan D A, Alfano R R 2012 Phys. Rev. Lett. 108 190401Google Scholar

    [24]

    Miyamoto K, Kang B J, Kim W T, Sasaki Y, Niinomi H, Suizu K, Rotermund F, Omatsu T 2016 Sci. Rep. 6 38880Google Scholar

    [25]

    Miyamoto K, Suizu K, Akiba T, Omatsu T 2014 Appl. Phys. Lett. 104 261104Google Scholar

计量
  • 文章访问数:  10743
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-09
  • 修回日期:  2020-05-30
  • 上网日期:  2020-06-05
  • 刊出日期:  2020-09-20

/

返回文章
返回
Baidu
map