Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on optical properties of ensemble of complex externally mixed aerosol particles under different relative humidity conditions

Wang Ming-jun Yu ji-hua Bai liang-liang Zhou Yi-ming

Citation:

Study on optical properties of ensemble of complex externally mixed aerosol particles under different relative humidity conditions

Wang Ming-jun, Yu ji-hua, Bai liang-liang, Zhou Yi-ming
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The microphysical quantities (particle shape, composition, size, density, complex refractive index, size distribution model, aspect ratio, hygroscopic parameter, etc.) of the ensemble of complex externally mixed aerosol particles in humid environments (sea fog, water mist, haze, etc.) vary greatly. These microphysical quantities directly affect the laser transmission and scattering properties. Due to the optical properties (extinction coefficient, absorption coefficient, backscattering coefficient, phase function, etc.) of the ensemble of complex externally mixed aerosol particles directly determine the propagation properties of laser signals in the atmosphere, as well as the intensity and shape of echo signals. Therefore, studying the optical properties of the ensemble of complex externally mixed aerosol particles in humid environments is of significant importance for engineering applications such as autonomous driving, mapping, remote sensing detection, and more.
    Based on the various possibilities of aerosol particles existing in humid environments, the diversity of physicochemical properties of aerosol particles, including their shape (sphere, oblate spheroid, prolate spheroid, and irregular), size distribution, complex refractive index, density, aspect ratio and its distribution models, as well as hygroscopicity parameters, etc., was fully taken into consideration in this paper. Therefore, a scattering model of the ensemble of complex externally mixed aerosol particles was presented in Section 2. Based on the presented complex aerosol scattering model, the influence of different mixing ratios (MR), and relative humidity (RH) on the optical properties, such as extinction coefficient, single scattering albedo, scattering phase matrix, asymmetry factor, backscattering coefficient, lidar ratio, and linear depolarization ratio, were numerically analyzed at typical laser wavelengths incident (0.78mm, 0.905mm, 1.064mm, 1.55mm, and 2.1mm).
    In order to verify and illustrate the rationality of the complex aerosol scattering model presented in this paper, it was compared with the scattering model of maritime pollution aerosol in OPAC in Section 3.1. The results show that the optical properties of these two different aerosol scattering models vary similarly with wavelength, although differences exist; overall, the differences are relatively small. Therefore, the influences of MR on the optical properties of the ensemble of complex internally mixed aerosol particles were analyzed in Section 3.2. The influences of RH on the optical properties of the ensemble of complex internally mixed aerosol particles were also analyzed in Section 3.3. The numerical results indicate that the extinction coefficient and phase function P11 exhibit strong sensitivity to both the MR and RH. As RH increases, the extinction coefficient, and the forward scattering of P11 also increase. Compared to MR, single scattering albedo and asymmetry factor are more sensitive to RH. Significant differences in the sensitivity of linear, and circular polarization properties to RH and wavelength are observed at different scattering angles. The backscattering coefficient is found to be inversely proportional to the lidar ratio, and both the backscattering coefficient and lidar ratio are sensitive to MR and RH. It is observed that RH has a more pronounced effect on the linear depolarization ratio, while the influence of MR is weaker. The complex scattering model presented in this paper further expands the study of aerosol optical properties and provides theoretical support for studying engineering applications involving lasers in different RHs environments. It is worth emphasizing that this paper only focuses on external mixing. Therefore, the optical properties of the ensemble of complex internally mixed aerosol particles under different RHs will be the focus of future research.
  • [1]

    Hess M, Koepke P, Schult I 1998B. Am. Meteorol. Soc. 79 831

    [2]

    Wang L 2022M.S. Thesis (Wuhan: Wuhan University of Science and Technology) (in Chinese) [王莉2022硕士学位论文(武汉: 武汉科技大学)]

    [3]

    Zhao J J, Gu F, Gu J H, Cui F P 2020Acta Opt. Sin. 40 0501001(in Chinese) [赵佳佳, 顾芳, 张加宏, 崔芬萍2020光学学报40 0501001]

    [4]

    Koepke P, Gasteiger J, Hess M 2015Atmos. Chem. Phys. 15 5947

    [5]

    Tao Z, Wang Z, Yang S, Shan H, Ma X, Zhang H, Zhao S, Liu D, Xie C, Wang Y 2016Atmos. Meas. Tech. 9 1369

    [6]

    Lian W, Dai C, Chen S, Zhang Y, Wu F, Zhang C, Wang C, Wei H 2024Remote Sens. 16 770

    [7]

    Petters M D, Kreidenweis S M 2007Atmos. Chem. Phys. 7 1961

    [8]

    Zieger P, Fierz-Schmidhauser R, Weingartner E, Baltensperger U 2013Atmos. Chem. Phys. 13 10609

    [9]

    Gasteiger J, Wiegner M 2018Geosci. Model Dev. 11 2739

    [10]

    Zhang X H, Dai C M, Zhang X, Wei H L, Zhu X J, Ma J 2019Infrar. Laser Eng. 48 0809002(in Chinese) [张学海, 戴聪明, 张鑫, 魏合理, 朱希娟, 马静2019红外与激光工程48 0809002]

    [11]

    Zhan J T, Zhang S, Fu Q, Duan J, Li Y C, Jiang H L 2020Infrar. Laser Eng. 49 20200057(in Chinese) [战俊彤, 张肃, 付强, 段锦, 李英超, 姜会林2020红外与激光工程49 20200057]

    [12]

    Shen C, Zhang S, Fu Q, Zhan J, Duan J, Li Y 2023Front. Phys. 11 1266027

    [13]

    Wu S, Gao X, Dou X, Xie L 2024J. Quant. Spectrosc. Radiat. Transfer 312 108808

    [14]

    Gasteiger J, Wiegner M, Groß S, Freudenthaler V, Toledano C, Tesche M, Kandler K 2011Tellus B: Chem. Phys. Meteorol. 63 725

    [15]

    Zhang X H, Wei H L, Dai C M, Cao Y N, Li X B 2015Acta Phys. Sin. 22 224205(in Chinese) [张学海, 魏合理, 戴聪明, 曹亚楠, 李学彬2015 22 224205]

    [16]

    Dubovik O, Sinyuk A, Lapyonok T, Holben B N, Mishchenko M, Yang P, Eck T F, Volten H, Muñoz O, Veihelmann B, Van der Zande W J, Leon J F, Sorokin M, Slutsker I 2006J. Geophys. Res. 111 D11208

    [17]

    Kandler K, Schütz L, Deutscher C, Ebert M, Hofmann H, Jäckel S, Jaenicke R, Knippertz P, Lieke K, Massling A, Petzold A, Schladitz B, Weinzierl A, Wiedensohler, Zorn S, Weinbruch1 S 2009Tellus B 61 32

    [18]

    Li L, Zheng X, Li Z Q, Li Z H, Dubovik O, Chen X F, Wendisch M 2017Opt. Express 25 A813

    [19]

    Wang M J, Wu Z S, Li Y L, Zhang X, You J G 2006Infrar. Laser Eng. 35 66(in Chinese) [王明军, 吴振森, 李应乐, 张小安, 由金光2006红外与激光工程35 66]

    [20]

    Wang M J, Yu J H, Ke X Z, Wu T 20182018 Progress in Electromagnetics Research Symposium Toyama, Japan, August 1-4, 2018 p1141

    [21]

    Meng Z, Yang P, Kattawar G W, Bi L, Liou K N, Laszlo I 2010J. Aerosol Sci. 41 501

    [22]

    Jung C H, Lee J Y, Um J, Lee S S, Yoon Y J, Kim Y P 2019Appl. Sci. 9 1443

    [23]

    Castellanos P, Colarco P, Espinosa W R, Guzewich S D, Levy R C, Miller R L, Chin M, Kahn R A, Kemppinen O, Moosmüller H, Nowottnick E P 2024Remote Sens. Environ. 303 113982

    [24]

    Liou K N, Yang P 2016Light Scattering by Ice Crystals: Fundamentals and Applications (Cambridge: Cambridge University Press) pp100-101

    [25]

    Akpootu D O, Bello G, Alaiyemola S R, Abdullahi Z, Aruna S, Umar M, Badmus T O, Isah A K, Abdulsalam M K, Aminu Z 2023DUJOPAS 9 86

  • [1] Hu Shuai, Gao Tai-Chang, Li Hao, Yang Bo, Jiang Zhi-Dong, Chen Ming, Li Shu-Lei. Simulating scattering properties of nonspherical aerosol particles using multiresolution timedomain method. Acta Physica Sinica, doi: 10.7498/aps.66.044207
    [2] Fu Cheng-Hua. Analysis of optical scattering of micro-nano particles. Acta Physica Sinica, doi: 10.7498/aps.66.097301
    [3] Zhang Yong-Yan, Wu Jiu-Hui, Zeng Tao, Zhong Hong-Min. Mechanism of eliminating the aerosol haze particles by using laser gradient force. Acta Physica Sinica, doi: 10.7498/aps.65.074203
    [4] Nie Min, Ren Jia-Ming, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing. Influences of nonspherical aerosol particles and relative humidity of atmosphere on the performance of free space quantum communication. Acta Physica Sinica, doi: 10.7498/aps.65.190301
    [5] Zhang Xue-Hai, Wei He-Li, Dai Cong-Ming, Cao Ya-Nan, Li Xue-Bin. Influence of aspect ratio on the light scattering properties of spherical aerosol particles. Acta Physica Sinica, doi: 10.7498/aps.64.224205
    [6] Zeng Lun-Wu, Zhang Hao, Tang Zhong-Liang, Song Run-Xia. Electromagnetic wave scattering by a topological insulator prolate spheroid particle. Acta Physica Sinica, doi: 10.7498/aps.61.177303
    [7] Fan Meng, Chen Liang-Fu, Li Shen-Shen, Tao Jin-Hua, Su Lin, Zou Ming-Min, Zhang Ying, Han Dong. Scattering properties of non-spherical particles in the CO2 shortwave infrared band. Acta Physica Sinica, doi: 10.7498/aps.61.204202
    [8] Sun Xian-Ming, Wang Hai-Hua, Shen Jin, Wang Shu-Jun. Scattering of polarized light by randomly oriented coated spheroidal particle. Acta Physica Sinica, doi: 10.7498/aps.60.114216
    [9] Fang Wei, Sun Jun, Xie Zhen-Ping, Xu Wen-Bo. Convergence analysis of quantum-behaved particle swarm optimization algorithm and study on its control parameter. Acta Physica Sinica, doi: 10.7498/aps.59.3686
    [10] Bai Lu, Tang Shuang-Qing, Wu Zhen-Sen, Xie Pin-Hua, Wang Shi-Mei. Study of random sample scattering phase functions of polydisperse atmospheric aerosol in ultraviolet band. Acta Physica Sinica, doi: 10.7498/aps.59.1749
    [11] Qing Tao, Shao Tian-Min, Wen Shi-Zhu. Analysis of adhesion process between material surfaces. Acta Physica Sinica, doi: 10.7498/aps.56.1555
    [12] Hao Nan, Zhou Bin, Chen Li-Min. Measurement of nitrous acid and retrieval of aerosol parameters with differential optical absorption spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.55.1529
    [13] Si Fu-Qi, Liu Jian-Guo, Xie Pin-Hua, Zhang Yu-Jun, Dou Ke, Liu Wen-Qing. Determination of size distribution of atmospheric aerosol by DOAS. Acta Physica Sinica, doi: 10.7498/aps.55.3165
    [14] Lou Zhi-Mei. Parametric orbit equation and symmetries of classical particle in the field of noncentral force. Acta Physica Sinica, doi: 10.7498/aps.54.1460
    [15] Wu Peng, Han Yi-Ping, Liu De-Fang. Computation of Gaussian beam scattering for larger particle. Acta Physica Sinica, doi: 10.7498/aps.54.2676
    [16] Bai Lu, Wu Zhen-Sen, Chen Hui, Guo Li-Xin. Scattering of fundamental Gaussian beam from on-axis cluster spheres. Acta Physica Sinica, doi: 10.7498/aps.54.2025
    [17] Xia Zhu-Hong, Fang Li, Zheng Hai-Yang, Hu Rui, Zhang Yu-Ying, Kong Xiang-He, Gu Xue-Jun, Zhu Yuan, Zhang Wei-Jun, Bao Jian, Xiong Lu-Yuan. Real-time measurement of the aerodynamic size of individual aerosol particles. Acta Physica Sinica, doi: 10.7498/aps.53.320
    [18] Chen Gang, Lou Zhi-Mei. Bound states of relativistic particles in a potential with four parameters for d iatomic molecules. Acta Physica Sinica, doi: 10.7498/aps.52.1075
    [19] Han Yi-ping, Wu Zhen-sen. Discussion of the Boundary Condition For Electromagnetic Scattering b y Spheroidal Particles. Acta Physica Sinica, doi: 10.7498/aps.49.57
    [20] RAO RUI-ZHONG. NUMERICAL ANALYSIS OF LIGHT SCATTERING BY RANDOMLY ORIENTED CUBIC PARTICLES. Acta Physica Sinica, doi: 10.7498/aps.47.1790
Metrics
  • Abstract views:  307
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Available Online:  24 January 2025

/

返回文章
返回
Baidu
map