-
Recently, researchers have proven that an infinite number of Charlies and a pair of Alice and Bob can share standard tripartite nonlocality and genuinely nonsignal nonlocality by violating the Mermin and NS inequalities within tripartite systems. This discovery undoubtedly provides new perspectives and potential in quantum information science. However, it should be noted that the above-mentioned conclusion is derived on the highly idealized assumption that the quantum system is perfect and free from external disturbances. In reality, the realization of this ideal state is a challenging proposition. As a fundamental aspect of quantum mechanics, the phenomenon of quantum entanglement is susceptible to the influence of external factors, such as noise, during its practical implementation. Additionally, the process of quantum measurement can introduce potential errors, which may potentially diminish or even negate the observed quantum nonlocality. In light of the above situation, we investigate whether it is possible to share the corresponding quantum nonlocality, despite the inevitable occurrence of noise and error. This paper aims to study and discuss the persistency of nonlocality in noisy three-qubit systems. Firstly, the sufficient conditions are provided for Alice and Bob to share standard tripartite nonlocality with any number of Charlies, even when measurements are noisy and the initial three-qubit system is in a maximally entangled state with noise. This finding indicates that certain standard tripartite nonlocality can persist under non-ideal conditions as long as certain conditions are met. Moreover, this article elucidates the necessary conditions for multiple independent Charlies to share genuinely nonsignal nonlocality with a pair of Alice and Bob in a non-ideal state. This implies that despite the presence of noise and errors, this type of genuinely nonsignal nonlocality can still be securely shared among multiple parties as long as specific conditions are met. This research provides a new theoretical basis for the security and feasibility of quantum communication. The comprehensive analysis presented in this paper offers insights into the behavior of triple quantum nonlocality under noiseless conditions.
-
Keywords:
- nonlocality /
- triple quantum /
- noises
[1] Bell J S 1964 Phys. Phys. Fiz. 1 195
Google Scholar
[2] Barrett J, Hardy L, Kent A 2005 Phys. Rev. Lett. 95 010503
Google Scholar
[3] Acín A, Brunner N, Gisin N, Massar S, Pironio S, Scarani V 2007 Phys. Rev. Lett. 98 230501
Google Scholar
[4] Li J J, Wang Y, Li H W, Bao W S 2020 Chin. Phys. B 29 030303
Google Scholar
[5] 周贤韬, 江英华 2023 72 020302
Google Scholar
Zhou X T, Jiang Y H 2023 Acta Phys. Sin. 72 020302
Google Scholar
[6] 张沛, 周小清, 李智伟 2014 63 130301
Google Scholar
Zhao P, Zhou X Q, Li Z W 2014 Acta Phys. Sin. 63 130301
Google Scholar
[7] Dynes J F, Yuan Z L, Sharpe A W, Shields A J 2008 Appl. Phys. Lett. 93 031109
Google Scholar
[8] Acín A, Masanes L 2016 Nature 540 213
Google Scholar
[9] Curchod F J, Johansson M, Augusiak R, Hoban M J, Wittek P, Acín A 2017 Phys. Rev. A 95 020102
Google Scholar
[10] Colbeck R, Renner R 2012 Nat. Phys. 8 450
Google Scholar
[11] Colbeck R, Kent A 2011 J. Phys. A: Math. Theor. 44 095305
Google Scholar
[12] 李宏欣, 王相宾, 刘欣, 韩宇, 闫宝, 王伟 2017 现代物理 7 257
Google Scholar
Li H X, Wang X B, Liu X, Han Y, Yan B, Wang W 2017 Modern Physics 7 257
Google Scholar
[13] 杜聪, 王金东, 秦晓娟, 魏正军, 於亚飞, 张智明 2020 69 190301
Google Scholar
Du C, Wang J D, Qin X J, Wei Z J, Yu Y F, Zhang Z M 2020 Acta Phys. Sin. 69 190301
Google Scholar
[14] 东晨, 赵尚弘, 董毅, 赵卫虎, 赵静 2014 63 170303
Google Scholar
Dong C, Zhao S H, Dong Y, Zhao W H, Zhao J 2014 Acta Phys. Sin. 63 170303
Google Scholar
[15] Silva R, Gisin N, Guryanova Y, Popescu S 2015 Phys. Rev. Lett. 114 250401
Google Scholar
[16] Mal S, Majumdar A, Home D 2016 Mathematics 4 48
Google Scholar
[17] Shenoy H A, Designolle S, Hirsch F, Silva R, Gisin N, Brunner N 2019 Phys. Rev. A 99 022317
Google Scholar
[18] Das D, Ghosal A, Sasmal S, Mal S, Majumdar A S 2019 Phys. Rev. A 99 022305
Google Scholar
[19] Brown P J, Colbeck R 2020 Phys. Rev. Lett. 125 090401
Google Scholar
[20] Zhang T G, Fei S M 2021 Phys. Rev. A 103 032216
Google Scholar
[21] Mermin N D 1990 Phys. Rev. Lett. 65 1838
Google Scholar
[22] Saha S, Das D, Sasmal S, Sarkar D, Mukherjee K, Roy K, Bhattacharya S S 2019 Quantum Inf. Process. 18 42
Google Scholar
[23] Svetlichny G 1987 Phys. Rev. D 35 3066
Google Scholar
[24] Bancal J D, Barrett J, Gisin N, Pironio S 2013 Phys. Rev. A 88 014102
Google Scholar
[25] Xi Y, Li M S, Fu L B, Zheng Z J 2023 Phys. Rev. A 107 062419
Google Scholar
[26] Mukherjee K, Chakrabarty I, Mylavarapu G 2023 Phys. Rev. A 107 032404
Google Scholar
[27] Mukherjee K 2022 Phys. Rev. A 106 042206
Google Scholar
[28] Ralston J P, Jain P, Nodland B 1998 Phys. Rev. Lett. 81 26
Google Scholar
[29] Pearle P M 1970 Phys. Rev. D 2 1418
Google Scholar
[30] Yang S S, Hou J C, He K 2024 Chin. Phys. B 33 010302
Google Scholar
-
[1] Bell J S 1964 Phys. Phys. Fiz. 1 195
Google Scholar
[2] Barrett J, Hardy L, Kent A 2005 Phys. Rev. Lett. 95 010503
Google Scholar
[3] Acín A, Brunner N, Gisin N, Massar S, Pironio S, Scarani V 2007 Phys. Rev. Lett. 98 230501
Google Scholar
[4] Li J J, Wang Y, Li H W, Bao W S 2020 Chin. Phys. B 29 030303
Google Scholar
[5] 周贤韬, 江英华 2023 72 020302
Google Scholar
Zhou X T, Jiang Y H 2023 Acta Phys. Sin. 72 020302
Google Scholar
[6] 张沛, 周小清, 李智伟 2014 63 130301
Google Scholar
Zhao P, Zhou X Q, Li Z W 2014 Acta Phys. Sin. 63 130301
Google Scholar
[7] Dynes J F, Yuan Z L, Sharpe A W, Shields A J 2008 Appl. Phys. Lett. 93 031109
Google Scholar
[8] Acín A, Masanes L 2016 Nature 540 213
Google Scholar
[9] Curchod F J, Johansson M, Augusiak R, Hoban M J, Wittek P, Acín A 2017 Phys. Rev. A 95 020102
Google Scholar
[10] Colbeck R, Renner R 2012 Nat. Phys. 8 450
Google Scholar
[11] Colbeck R, Kent A 2011 J. Phys. A: Math. Theor. 44 095305
Google Scholar
[12] 李宏欣, 王相宾, 刘欣, 韩宇, 闫宝, 王伟 2017 现代物理 7 257
Google Scholar
Li H X, Wang X B, Liu X, Han Y, Yan B, Wang W 2017 Modern Physics 7 257
Google Scholar
[13] 杜聪, 王金东, 秦晓娟, 魏正军, 於亚飞, 张智明 2020 69 190301
Google Scholar
Du C, Wang J D, Qin X J, Wei Z J, Yu Y F, Zhang Z M 2020 Acta Phys. Sin. 69 190301
Google Scholar
[14] 东晨, 赵尚弘, 董毅, 赵卫虎, 赵静 2014 63 170303
Google Scholar
Dong C, Zhao S H, Dong Y, Zhao W H, Zhao J 2014 Acta Phys. Sin. 63 170303
Google Scholar
[15] Silva R, Gisin N, Guryanova Y, Popescu S 2015 Phys. Rev. Lett. 114 250401
Google Scholar
[16] Mal S, Majumdar A, Home D 2016 Mathematics 4 48
Google Scholar
[17] Shenoy H A, Designolle S, Hirsch F, Silva R, Gisin N, Brunner N 2019 Phys. Rev. A 99 022317
Google Scholar
[18] Das D, Ghosal A, Sasmal S, Mal S, Majumdar A S 2019 Phys. Rev. A 99 022305
Google Scholar
[19] Brown P J, Colbeck R 2020 Phys. Rev. Lett. 125 090401
Google Scholar
[20] Zhang T G, Fei S M 2021 Phys. Rev. A 103 032216
Google Scholar
[21] Mermin N D 1990 Phys. Rev. Lett. 65 1838
Google Scholar
[22] Saha S, Das D, Sasmal S, Sarkar D, Mukherjee K, Roy K, Bhattacharya S S 2019 Quantum Inf. Process. 18 42
Google Scholar
[23] Svetlichny G 1987 Phys. Rev. D 35 3066
Google Scholar
[24] Bancal J D, Barrett J, Gisin N, Pironio S 2013 Phys. Rev. A 88 014102
Google Scholar
[25] Xi Y, Li M S, Fu L B, Zheng Z J 2023 Phys. Rev. A 107 062419
Google Scholar
[26] Mukherjee K, Chakrabarty I, Mylavarapu G 2023 Phys. Rev. A 107 032404
Google Scholar
[27] Mukherjee K 2022 Phys. Rev. A 106 042206
Google Scholar
[28] Ralston J P, Jain P, Nodland B 1998 Phys. Rev. Lett. 81 26
Google Scholar
[29] Pearle P M 1970 Phys. Rev. D 2 1418
Google Scholar
[30] Yang S S, Hou J C, He K 2024 Chin. Phys. B 33 010302
Google Scholar
Catalog
Metrics
- Abstract views: 1402
- PDF Downloads: 46
- Cited By: 0