Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Potential risk of variable parameter cascade chaos system

Jin Jian-Guo Di Zhi-Gang Wei Ming-Jun

Citation:

Potential risk of variable parameter cascade chaos system

Jin Jian-Guo, Di Zhi-Gang, Wei Ming-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Lyapunov index is one of criteria for testing whether the system is in a chaotic state, and its value represents the developed level of system chaotic state. To study the Lyapunov index characteristic of cascade chaotic system and reveal disturbance mechanism among subsystems in cascade chaotic system, the following researches are carried out. First, the disturbance model among subsystems is constructed from the viewpoint of pseudo noise disturbance, Lyapunov index difference between without and with external noise influence is investigated. Then the conclusion that disturbances among subsystems can be considered as pseudo noise influence is drawn. Second, the conclusion is proved that cascade system Lyapunov index is not the algebraic sum of each independent subsystems, but the one of each subsystems which consist of pre disturbances. Then taking the logistic representation for example, nine cascade systems are designed to prove this conclusion. And some novel characteristics and phenomena are found from the above investigations. They are (a) the phenomenon of “more is less”, that is, Lyapunov index will decrease with the increase of cascade levels, and the phenomenon of “A miss is as good as mile”; (b) even each independent subsystems is chaotic, the cascade system needs not to be chaotic; conversely, even each independent subsystems is not chaotic, the cascade system may be chaotic; (c) whether the cascade system is chaotic is associated with the order of subsystem. Finally, it is pointed out that cascade level has the influences of pros and cons on cascade system, thus revealing the latent hazard of parametric cascade chaotic system. The research result can provide important theoretic foundation for system security and the scientific evaluation of encryption keys.
    • Funds: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. F2014209108).
    [1]

    Alvarez G 2005 Chaos Soliton. Fract. 26 7

    [2]

    Wang X Y, Teng L 2012 Chin. Phys. B 21 020504

    [3]

    Tong X J 2013 Commun. Ninlinear Sci. Numer. Simul. 18 1725

    [4]

    Ahmed A, Abd E, Li L, Wang N, Han Q, Niu X M 2013 Sign. Process. 93 2986

    [5]

    Jin J X, Qiu S S 2010 Acta Phys. Sin. 59 792 (in Chinese) [晋建秀, 丘水生 2010 59 792]

    [6]

    Zhu C X, Sun K H 2012 Acta Phys. Sin. 61 120503 (in Chinese) [朱从旭, 孙克辉 2012 61 120503]

    [7]

    Yuan Z X, Huang G H 2012 Chin. Phys. B 21 010502

    [8]

    Wang X Y, He G X 2012 Chin. Phys. B 21 060502

    [9]

    Luo Y L, Du M H 2013 Chin. Phys. B 22 080503

    [10]

    Zhang C X, Yu S M 2010 Acta Phys. Sin. 59 3017 (in Chinese) [张朝霞, 禹思敏 2010 59 3017]

    [11]

    Jin J G, Chen C, Wei M J, Xia L C, Di Z G, Jia C R 2012 Comput. Engineer. 38 95 (in Chinese) [金建国, 陈晨, 魏明军,夏丽春, 贾春荣 2012 计算机工程 38 95]

    [12]

    Li N, Li J F, Liu Y P 2010 Acta Phys. Sin. 59 5954 (in Chinese) [李农, 李建芬, 刘宇平 2010 59 5954]

    [13]

    Hu J F, Guo J B 2008 Acta Phys. Sin. 57 1477 (in Chinese) [胡进峰, 郭静波 2008 57 1477]

    [14]

    Chen Z, Zeng Y C, Fu Z J 2008 Acta Phys. Sin. 57 46 (in Chinese) [陈争, 曾以成, 付志坚 2008 57 46]

    [15]

    Huang F, Guan Z H 2005 Chaos Soliton. Fract. 23 851

    [16]

    Yao C G, Zhao Q, Yu J 2013 Phys. Lett. A 377 370

    [17]

    Choi S Y, Lee E K 1995 Phys. Lett. A 205 173

    [18]

    Wang G Y, Yuan F 2013 Acta Phys. Sin. 62 020506 (in Chinese) [王光义, 袁方 2013 62 020506]

    [19]

    Cao H F, Zhang R X 2012 Acta Phys. Sin. 61 020508 (in Chinese) [曹鹤飞, 张若洵 2012 61 020508]

    [20]

    Jin J G, Lin R, Zhang Q L, Hou G Q, Di Z G, Jia C R 2009 Comput. Engineer. 35 137 (in Chinese) [金建国, 林瑞, 张庆凌, 侯国强, 邸志刚, 贾春荣 2009 计算机工程 35 137]

    [21]

    Sekikawa M, Inaba N, Tsubouchi T, Aihara K 2012 Physica D 241 1169

    [22]

    Stachowiak T, Szydlowski M 2011 Physica D 240 1221

    [23]

    David R, Lai Y C 2000 Phys. Lett. A 270 308

    [24]

    Zang H Y, Fan X B, Min L Q, Han D D 2012 Acta Phys. Sin. 61 200508 (in Chinese) [臧鸿雁, 范修斌, 闵乐泉, 韩丹丹 2012 61 200508]

    [25]

    Zhou X Y, Qiao X H, Zhu L, Liu S F 2013 Acta Phys. Sin. 62 190504 (in Chinese) [周小勇, 乔晓华, 朱雷, 刘素芬 2013 62 190504]

    [26]

    Shao K Y, Ma Y J, Wang T T, Liu Y H, Yang L, Gao H Y 2013 Acta Phys. Sin. 62 020514 (in Chinese) [邵克勇, 马永晶, 王婷婷, 刘远红, 杨莉, 高宏宇 2013 62 020514]

    [27]

    Jin J G, Wei M J, Di Z G, Xu G L, Jia C R, Zhao H W 2011 Comput. Engineer. 37 12 (in Chinese) [金建国, 魏明军, 邸志刚, 许广利, 贾春荣, 赵宏微 2011 计算机工程 37 12]

    [28]

    Hao B L 1993 Advanced Series in Nonlinear Science Staring With Parbolas-An Introduction to Chaotic Dynamics (Vol.1) (Shanghai: Shanghai Scientific and Technolgical Education Press) pp122-125 (in Chinese) [郝柏林 1993 从抛物 线谈起–-混沌动力学引论 (第一版) (上海: 上海科学技术出版社) 第122–125页]

  • [1]

    Alvarez G 2005 Chaos Soliton. Fract. 26 7

    [2]

    Wang X Y, Teng L 2012 Chin. Phys. B 21 020504

    [3]

    Tong X J 2013 Commun. Ninlinear Sci. Numer. Simul. 18 1725

    [4]

    Ahmed A, Abd E, Li L, Wang N, Han Q, Niu X M 2013 Sign. Process. 93 2986

    [5]

    Jin J X, Qiu S S 2010 Acta Phys. Sin. 59 792 (in Chinese) [晋建秀, 丘水生 2010 59 792]

    [6]

    Zhu C X, Sun K H 2012 Acta Phys. Sin. 61 120503 (in Chinese) [朱从旭, 孙克辉 2012 61 120503]

    [7]

    Yuan Z X, Huang G H 2012 Chin. Phys. B 21 010502

    [8]

    Wang X Y, He G X 2012 Chin. Phys. B 21 060502

    [9]

    Luo Y L, Du M H 2013 Chin. Phys. B 22 080503

    [10]

    Zhang C X, Yu S M 2010 Acta Phys. Sin. 59 3017 (in Chinese) [张朝霞, 禹思敏 2010 59 3017]

    [11]

    Jin J G, Chen C, Wei M J, Xia L C, Di Z G, Jia C R 2012 Comput. Engineer. 38 95 (in Chinese) [金建国, 陈晨, 魏明军,夏丽春, 贾春荣 2012 计算机工程 38 95]

    [12]

    Li N, Li J F, Liu Y P 2010 Acta Phys. Sin. 59 5954 (in Chinese) [李农, 李建芬, 刘宇平 2010 59 5954]

    [13]

    Hu J F, Guo J B 2008 Acta Phys. Sin. 57 1477 (in Chinese) [胡进峰, 郭静波 2008 57 1477]

    [14]

    Chen Z, Zeng Y C, Fu Z J 2008 Acta Phys. Sin. 57 46 (in Chinese) [陈争, 曾以成, 付志坚 2008 57 46]

    [15]

    Huang F, Guan Z H 2005 Chaos Soliton. Fract. 23 851

    [16]

    Yao C G, Zhao Q, Yu J 2013 Phys. Lett. A 377 370

    [17]

    Choi S Y, Lee E K 1995 Phys. Lett. A 205 173

    [18]

    Wang G Y, Yuan F 2013 Acta Phys. Sin. 62 020506 (in Chinese) [王光义, 袁方 2013 62 020506]

    [19]

    Cao H F, Zhang R X 2012 Acta Phys. Sin. 61 020508 (in Chinese) [曹鹤飞, 张若洵 2012 61 020508]

    [20]

    Jin J G, Lin R, Zhang Q L, Hou G Q, Di Z G, Jia C R 2009 Comput. Engineer. 35 137 (in Chinese) [金建国, 林瑞, 张庆凌, 侯国强, 邸志刚, 贾春荣 2009 计算机工程 35 137]

    [21]

    Sekikawa M, Inaba N, Tsubouchi T, Aihara K 2012 Physica D 241 1169

    [22]

    Stachowiak T, Szydlowski M 2011 Physica D 240 1221

    [23]

    David R, Lai Y C 2000 Phys. Lett. A 270 308

    [24]

    Zang H Y, Fan X B, Min L Q, Han D D 2012 Acta Phys. Sin. 61 200508 (in Chinese) [臧鸿雁, 范修斌, 闵乐泉, 韩丹丹 2012 61 200508]

    [25]

    Zhou X Y, Qiao X H, Zhu L, Liu S F 2013 Acta Phys. Sin. 62 190504 (in Chinese) [周小勇, 乔晓华, 朱雷, 刘素芬 2013 62 190504]

    [26]

    Shao K Y, Ma Y J, Wang T T, Liu Y H, Yang L, Gao H Y 2013 Acta Phys. Sin. 62 020514 (in Chinese) [邵克勇, 马永晶, 王婷婷, 刘远红, 杨莉, 高宏宇 2013 62 020514]

    [27]

    Jin J G, Wei M J, Di Z G, Xu G L, Jia C R, Zhao H W 2011 Comput. Engineer. 37 12 (in Chinese) [金建国, 魏明军, 邸志刚, 许广利, 贾春荣, 赵宏微 2011 计算机工程 37 12]

    [28]

    Hao B L 1993 Advanced Series in Nonlinear Science Staring With Parbolas-An Introduction to Chaotic Dynamics (Vol.1) (Shanghai: Shanghai Scientific and Technolgical Education Press) pp122-125 (in Chinese) [郝柏林 1993 从抛物 线谈起–-混沌动力学引论 (第一版) (上海: 上海科学技术出版社) 第122–125页]

  • [1] Zhang Zhi-Da, Yi Kang-Yuan, Chen Yuan-Zhen, Yan Fei. Dynamic decoupling for multi-level systems. Acta Physica Sinica, 2023, 72(10): 100305. doi: 10.7498/aps.72.20222398
    [2] Leng Yong-Gang, Zhao Yue. Pulse response of a monostable system. Acta Physica Sinica, 2015, 64(21): 210503. doi: 10.7498/aps.64.210503
    [3] Liu Hong-Mei, Yang Chun-Hua, Liu Xin, Zhang Jian-Qi, Shi Yun-Long. Noise characterization of quantum dot infrared photodetectors. Acta Physica Sinica, 2013, 62(21): 218501. doi: 10.7498/aps.62.218501
    [4] Wang Xin-Ying, Han Min, Wang Ya-Nan. Analysis of noisy chaotic time series prediction error. Acta Physica Sinica, 2013, 62(5): 050504. doi: 10.7498/aps.62.050504
    [5] Wang Can-Jun, Li Jiang-Cheng, Mei Dong-Cheng. Effect of noises on the stability of a metapopulation. Acta Physica Sinica, 2012, 61(12): 120506. doi: 10.7498/aps.61.120506
    [6] Guo Yong-Feng, Tan Jian-Guo. Suprathreshold stochastic resonance of a non-linear multilevel threshold neuronal networks system. Acta Physica Sinica, 2012, 61(17): 170502. doi: 10.7498/aps.61.170502
    [7] Yang Lin-Jing, Dai Zu-Cheng. The effects of correlated time between noises on stability of unstable state in Logistic system. Acta Physica Sinica, 2012, 61(10): 100509. doi: 10.7498/aps.61.100509
    [8] Yao Tian-Liang, Liu Hai-Feng, Xu Jian-Liang, Li Wei-Feng. Noise-level estimation of noisy chaotic time series based on the invariant of the largest Lyapunov exponent. Acta Physica Sinica, 2012, 61(6): 060503. doi: 10.7498/aps.61.060503
    [9] Yang Lin-Jing. Effects of time delay on transition rate of state in an increasing process of Logistic system. Acta Physica Sinica, 2011, 60(5): 050502. doi: 10.7498/aps.60.050502
    [10] Wang Hui-Qiao, Yu Lian-Chun, Chen Yong. Effects of channel noise on metabolic energy cost of action potentials. Acta Physica Sinica, 2009, 58(7): 5070-5074. doi: 10.7498/aps.58.5070
    [11] Liang Xiao-Bing, Liu Xi-Shun, Liu An-Zhi, Wang Bo-Liang. The transmission of weak signal in one-way coupled Hodgkin-Huxley neural system. Acta Physica Sinica, 2009, 58(7): 5065-5069. doi: 10.7498/aps.58.5065
    [12] Wang Bao-Hua, Lu Qi-Shao, Lü Shu-Juan. The spatio-temporal stochastic resonance of calcium in coupled hepatocytes systems affected by subthreshold stimuli and noise. Acta Physica Sinica, 2009, 58(11): 7458-7465. doi: 10.7498/aps.58.7458
    [13] Li Chun-Biao, Wang Han-Kang. An extension system with constant Lyapunov exponent spectrum and its evolvement. Acta Physica Sinica, 2009, 58(11): 7514-7524. doi: 10.7498/aps.58.7514
    [14] He Liang, Du Lei, Zhuang Yi-Qi, Li Wei-Hua, Chen Jian-Ping. Multiscale entropy complexity analysis of metallic interconnection electromigration noise. Acta Physica Sinica, 2008, 57(10): 6545-6550. doi: 10.7498/aps.57.6545
    [15] Wang Xue-Mei, Zhang Bo, Qiu Dong-Yuan. Mechanism of period-doubling bifurcation in DCM DC-DC converter. Acta Physica Sinica, 2008, 57(5): 2728-2736. doi: 10.7498/aps.57.2728
    [16] Liu Ze-Zhuan, Yang Zhi-An. Influence of noise on self-trapping of Bose-Einstein condensates in double-well trap. Acta Physica Sinica, 2007, 56(3): 1245-1252. doi: 10.7498/aps.56.1245
    [17] Research on noise correlation dimension of metallic interconnection electromigration. Acta Physica Sinica, 2007, 56(12): 7176-7182. doi: 10.7498/aps.56.7176
    [18] Li Rui-Hong, Xu Wei, Li Shuang. Linear state feedback control for a new chaotic system. Acta Physica Sinica, 2006, 55(2): 598-604. doi: 10.7498/aps.55.598
    [19] Zhang Yu-Hui, Qi Guo-Yuan, Liu Wen-Liang, Yan Yan. Theoretical analysis and circuit implementation of a new four dimensional chaotic system. Acta Physica Sinica, 2006, 55(7): 3307-3314. doi: 10.7498/aps.55.3307
    [20] Leng Yong-Gang, Wang Tai-Yong, Guo Yan, Wang Wen-Jin, Hu Shi-Guang. Stochastic resonance behaviors of bistable systems connected in series. Acta Physica Sinica, 2005, 54(3): 1118-1125. doi: 10.7498/aps.54.1118
Metrics
  • Abstract views:  5719
  • PDF Downloads:  529
  • Cited By: 0
Publishing process
  • Received Date:  05 January 2014
  • Accepted Date:  11 February 2014
  • Published Online:  05 June 2014

/

返回文章
返回
Baidu
map