Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Studying near-field propagation of generalized parabolic beams by virtual source method

Li Jia-Ning Liu Wen Ren Zhi-Jun

Citation:

Studying near-field propagation of generalized parabolic beams by virtual source method

Li Jia-Ning, Liu Wen, Ren Zhi-Jun
cstr: 32037.14.aps.73.20241026
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Generalized parabolic beams have various optical morphologies. They can be used in different research fields, such as component design, aero-optics, and microwave wireless power transmission. Studying the near-field transmission characteristics of these beams is important for improving utilization efficiency. We develop a more accurate theoretical framework to precisely understand the propagation behaviors of complex light fields in the near-field range, especially to break through the limitations of conventional near-axis approximation. This framework fully reveals the propagation mechanism of parabolic beams and their energy transmission modes. Here, based on the principle of independent propagation and the virtual source method, a group of virtual sources are introduced to analyze generalized parabolic beams. These beams can be expanded into the superposition of infinite continuous integer Bessel beams. Then, by combining the Weber integral formula and the Fourier Bessel transform, we rigorously derive an integral expression for generalized parabolic beams during near-field propagation. This expression breaks through the limitation of the traditional paraxial approximation and contains all the key propagation parameters of the family of beams. Based on this integral expression, the intensity distribution and phase characteristics of the generalized parabolic beam along the optical axis are further calculated and analyzed to reveal its energy transfer mode and phase characteristics. By comparing the paraxial approximate solution with the nonparaxial corrected solution for generalized parabolic beams, the far-field propagation of generalized parabolic beams is found to be the same when the propagation distance is sufficiently long. Such simulation results indirectly confirm the correctness of the obtained theoretical solution. The simple paraxial approximation theory can be used conveniently to calculate the far-field propagation of generalized parabolic beams. However, large errors exist when paraxial theory is used to calculate the near-field distribution of generalized parabolic beams. Although calculating nonparaxial propagation is especially complex, the nonparaxial correction solution is necessary when generalized parabolic beams are used in near-field research. Such research results not only deepen the understanding of the propagation mechanism of generalized parabolic beams but also lay a theoretical foundation for studying the precise propagation behaviors of other complex light fields in near-field optics.
      Corresponding author: Ren Zhi-Jun, renzhijun@zjnu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12474301).
    [1]

    Durnin J, Miceli J J, Eberly J H 1987 Phys. Rev. Lett. 58 1499Google Scholar

    [2]

    Durnin J 1987 J. Opt. Soc. Am. A 4 651Google Scholar

    [3]

    Gutiérrez-Vega J C, Iturbe-Castillo M D, Chávez-Cerda S 2000 Opt. Lett. 25 1493Google Scholar

    [4]

    Sosa-Sánchez C T, Silva-Ortigoza G, Juárez-Reyes S A, et al. 2017 J. Opt. 19 085604Google Scholar

    [5]

    Bandres M A, Gutirrez-Vega J C, Chvez-Cerda S 2004 Opt. Lett. 29 44Google Scholar

    [6]

    Khonina S N, Ustinov A V, Chávez-Cerda S 2018 J. Opt. Soc. Am. A 35 1511Google Scholar

    [7]

    Liang Y S, Yan S H, Wang Z J, Li R Z, Cai Y N, He M R, Yao B L, Lei M 2020 Rep. Prog. Phys. 83 032401Google Scholar

    [8]

    Gu S Y, Yu X H, Bai C, Min J W, Li R Z, Yang Y L, Yao B L 2022 Front. Phys. 10 1111023Google Scholar

    [9]

    Deschamps G A 1971 Electron. Lett. 7 684Google Scholar

    [10]

    Felsen L B 1976 J. Opt. Soc. Am. A 66 751Google Scholar

    [11]

    Seshadri S R 2002 Opt. Lett. 27 998Google Scholar

    [12]

    Borghi R, Santarsiero M 1997 Opt. Lett. 22 262Google Scholar

    [13]

    Li Y J, Lee H, Wolf E 2004 J. Opt. Soc. Am. A 21 640Google Scholar

    [14]

    Song L B, Ren Z J, Fan C J, Qian Y X 2021 Opt. Commun. 499 127307Google Scholar

    [15]

    Gori F, Guattari G, Padovani C 1987 Opt. Commun. 64 491Google Scholar

    [16]

    Seshadri S R 2002 Opt. Lett. 27 1872Google Scholar

    [17]

    Yan S H, Yao B L, Lei M, Dan D, Yang Y L, Gao P 2012 Opt. Lett. 37 4774Google Scholar

    [18]

    Seshadri S R 2003 Opt. Lett. 28 595Google Scholar

    [19]

    Khonina S N, Ustinov A V, Porfirev A P 2019 Opt. Commun. 450 103Google Scholar

    [20]

    陈鑫淼, 李海英, 吴涛, 孟祥帅, 黎凤霞 2023 72 100302Google Scholar

    Chen X M, Li H Y, Wu T, Meng X S, Li F X 2023 Acta Phys. Sin. 72 100302Google Scholar

    [21]

    岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰 2023 72 125201Google Scholar

    Yue D N, Dong Q L, Chen M, Zhao Y, Geng P F, Yuan X H, Sheng Z M, Zhang J 2023 Acta Phys. Sin. 72 125201Google Scholar

    [22]

    尹培琪, 许博坪, 刘颖华, 王屹山, 赵卫, 汤洁 2024 73 095202Google Scholar

    Yin P Q, Xu B P, Liu Y H, Wang Y S, Zhao W, Tang J 2024 Acta Phys. Sin. 73 095202Google Scholar

  • 图 1  连续参数a = 0时的广义二阶抛物光束的轴上强度

    Figure 1.  The on-axis intensity distribution of the Parabolic beams with continuous parameter a = 0.

    图 2  连续参数a = 0时的广义二阶抛物光束的轴上相位

    Figure 2.  The on-axis phase distribution of the Parabolic beams with continuous parameter a = 0.

    Baidu
  • [1]

    Durnin J, Miceli J J, Eberly J H 1987 Phys. Rev. Lett. 58 1499Google Scholar

    [2]

    Durnin J 1987 J. Opt. Soc. Am. A 4 651Google Scholar

    [3]

    Gutiérrez-Vega J C, Iturbe-Castillo M D, Chávez-Cerda S 2000 Opt. Lett. 25 1493Google Scholar

    [4]

    Sosa-Sánchez C T, Silva-Ortigoza G, Juárez-Reyes S A, et al. 2017 J. Opt. 19 085604Google Scholar

    [5]

    Bandres M A, Gutirrez-Vega J C, Chvez-Cerda S 2004 Opt. Lett. 29 44Google Scholar

    [6]

    Khonina S N, Ustinov A V, Chávez-Cerda S 2018 J. Opt. Soc. Am. A 35 1511Google Scholar

    [7]

    Liang Y S, Yan S H, Wang Z J, Li R Z, Cai Y N, He M R, Yao B L, Lei M 2020 Rep. Prog. Phys. 83 032401Google Scholar

    [8]

    Gu S Y, Yu X H, Bai C, Min J W, Li R Z, Yang Y L, Yao B L 2022 Front. Phys. 10 1111023Google Scholar

    [9]

    Deschamps G A 1971 Electron. Lett. 7 684Google Scholar

    [10]

    Felsen L B 1976 J. Opt. Soc. Am. A 66 751Google Scholar

    [11]

    Seshadri S R 2002 Opt. Lett. 27 998Google Scholar

    [12]

    Borghi R, Santarsiero M 1997 Opt. Lett. 22 262Google Scholar

    [13]

    Li Y J, Lee H, Wolf E 2004 J. Opt. Soc. Am. A 21 640Google Scholar

    [14]

    Song L B, Ren Z J, Fan C J, Qian Y X 2021 Opt. Commun. 499 127307Google Scholar

    [15]

    Gori F, Guattari G, Padovani C 1987 Opt. Commun. 64 491Google Scholar

    [16]

    Seshadri S R 2002 Opt. Lett. 27 1872Google Scholar

    [17]

    Yan S H, Yao B L, Lei M, Dan D, Yang Y L, Gao P 2012 Opt. Lett. 37 4774Google Scholar

    [18]

    Seshadri S R 2003 Opt. Lett. 28 595Google Scholar

    [19]

    Khonina S N, Ustinov A V, Porfirev A P 2019 Opt. Commun. 450 103Google Scholar

    [20]

    陈鑫淼, 李海英, 吴涛, 孟祥帅, 黎凤霞 2023 72 100302Google Scholar

    Chen X M, Li H Y, Wu T, Meng X S, Li F X 2023 Acta Phys. Sin. 72 100302Google Scholar

    [21]

    岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰 2023 72 125201Google Scholar

    Yue D N, Dong Q L, Chen M, Zhao Y, Geng P F, Yuan X H, Sheng Z M, Zhang J 2023 Acta Phys. Sin. 72 125201Google Scholar

    [22]

    尹培琪, 许博坪, 刘颖华, 王屹山, 赵卫, 汤洁 2024 73 095202Google Scholar

    Yin P Q, Xu B P, Liu Y H, Wang Y S, Zhao W, Tang J 2024 Acta Phys. Sin. 73 095202Google Scholar

Metrics
  • Abstract views:  1145
  • PDF Downloads:  28
  • Cited By: 0
Publishing process
  • Received Date:  23 July 2024
  • Accepted Date:  28 August 2024
  • Available Online:  20 September 2024
  • Published Online:  05 November 2024

/

返回文章
返回
Baidu
map