-
Ferroelectric material is a kind of material with spontaneous polarization, and water is a common polar solvent. Due to polarity, there are complex interactions at the interface between ferroelectric materials and water/aqueous solutions. Understanding these physical processes and mechanisms is of great significance for both theoretical research and practical applications. Herein, the surface structure of (001) orientated BaTiO3 with (001) direction polarization single crystal is studied by synchrotron radiation diffraction technology, and the effects of liquids with different pH values on surface structure of BaTiO3 single crystal was also investigated. The results show that BaTiO3 single crystal contains a surface layer with a low electron density, and due to the effect of polarity, a 2.6 nm-thick water layer is adsorbed on the surface of BaTiO3 single crystal. After adding deionized water on the surface, there is no significant change in the surface layer structure of BaTiO3. Low temperature in-situ grazing incidence X-ray diffraction experiments indicate the presence of ice on the surface, further confirming the existence of adsorbed water layers on the surface. A hydrochloric acid solution with pH = 1 has no significant effect on the surface structure of BaTiO3, either, which is possibly due to the ability of acidic solutions to stabilize the original polarization direction. However, an NaOH solution with a pH = 13 can thicken the surface layer, which possibly results from the weakening of surface polarization caused by alkaline solutions, thereby changing the surface depolarization field and surface layer thickness.
-
Keywords:
- ferroelectric polarization /
- pH value /
- surface structure
[1] Chen L, Qian L M 2021 Friction 9 1
Google Scholar
[2] Iwahori K, Watanabe S, Kawai M, Kobayashi K, Yamada H, Matsushige K 2003 J. Appl. Phys. 93 3223
Google Scholar
[3] Geneste G, Dkhil B 2009 Phys. Rev. B 79 235420
Google Scholar
[4] Domingo N, Pach E, Cordero-Edwards K, Perez-Dieste V, Escudero C, Verdaguer A 2019 Phys. Chem. Chem. Phys. 21 4920
Google Scholar
[5] Li X, Wang B C, Zhang T Y, Su Y J 2014 J. Phys. Chem. C 118 15910
Google Scholar
[6] Efe I, Spaldin N A, Gattinoni C 2021 J. Chem. Phys. 154 024702
Google Scholar
[7] Chornik B, Fuenzalida V A, Grahmann C R, Labbe R 1997 Vacuum 48 161
Google Scholar
[8] Wegmann M, Watson L, Hendry A 2004 J. Am. Ceram. Soc. 87 371
Google Scholar
[9] Fuenzalida V M, Pilleux M E, Eisele I 1999 Vacuum 55 81
Google Scholar
[10] Wang J L, Gaillard F, Pancotti A, Gautier B, Niu G, Vilquin B, Pillard V, Rodrigues G L M P, Barrett N 2012 J. Phys. Chem. C 116 21802
Google Scholar
[11] Lee H, Kim T H, Patzner J J, Lu H, Lee J W, Zhou H, Chang W, Mahanthappa M K, Tsymbal E Y, Gruverman A, Eom C B 2016 Nano Lett. 16 2400
Google Scholar
[12] Song W, Salvador P A, Rohrer G S 2018 Surface Sci. 675 83
Google Scholar
[13] Shin J, Nascimento V B, Geneste G, Rundgren J, Plummer E W, Dkhil B, Kalinin S V, Baddorf A P 2009 Nano Lett. 9 3720
Google Scholar
[14] Pierre-Marie D, Bruno D, Céline D 2020 Phys. Rev. B 101 075410
Google Scholar
[15] Marra W C, Eisenberger P, Cho A Y 1979 J. Appl. Phys. 50 6927
Google Scholar
[16] Dosch H, Batterman B W, Wack D C 1986 Phys. Rev. Lett. 56 1144
Google Scholar
[17] Marti X, Ferrer P, Herrero-Albillos J, Narvaez J, Holy V, Barrett N, Alexe M, Catalan G 2011 Phys. Rev. Lett. 106 236101
Google Scholar
[18] Song C Y, Gao J C, Liu J C, Yang Y B, Tian C F, Hong J W, Weng H M, Zhang J X 2020 ACS Appl. Mater. Interfaces 12 4150
Google Scholar
[19] Barabanova E V, Ivanova A I, Malyshkina O V, Vinogradova Y K, Akbaeva G M 2021 Ferroelectrics 574 37
Google Scholar
[20] Li X L, Lu H B, Li M, Mai Z H, Kim H, Jia Q J 2008 Appl. Phys. Lett. 92 012902
Google Scholar
[21] Li X L, Lu H B, Li M, Mai Z H, Kim H 2008 J. Appl. Phys. 103 054109
Google Scholar
[22] Yang T Y, Zhang X M, Chen B, Guo H Z, Jin K J, Wu X S, Gao X Y, Li Z, Wang C, Li X L 2017 ACS Appl. Mater. Interfaces 9 5600
Google Scholar
[23] Lee D, Yoon A, Jang S Y, Yoon J G, Chung J S, Kim M, Scott J F, Noh T W 2011 Phys. Rev. Lett. 107 057602
Google Scholar
[24] Kalinin S V, Bonnell D A 2001 Phys. Rev. B 63 125411
Google Scholar
[25] Tian Y, Wei L Y, Zhang Q H, Huang H B, Zhang Y L, Zhou H, Ma F J, Gu L, Meng S, Chen L Q, Nan C W, Zhang J X 2018 Nat. Commun. 9 3809
Google Scholar
-
图 3 BTO单晶的XRR图及拟合结果, 黑色方块为实验结果, 红线为拟合结果, 插图为电子密度随深度变化曲线 (a)未做任何处理; (b)表面滴加pH = 1的盐酸; (c)滴加去离子水; (d)滴加pH = 13的NaOH溶液
Figure 3. XRR patterns and fitting results of BTO single crystal, black square represents experimental data, red curve represents fitting results. Inserts: electron density profile: (a) Without any treatment; (b) hydrochloric acid (pH = 1) on the surface; (c) deionized water on the surface; (d) NaOH solution (pH = 13) on the surface.
-
[1] Chen L, Qian L M 2021 Friction 9 1
Google Scholar
[2] Iwahori K, Watanabe S, Kawai M, Kobayashi K, Yamada H, Matsushige K 2003 J. Appl. Phys. 93 3223
Google Scholar
[3] Geneste G, Dkhil B 2009 Phys. Rev. B 79 235420
Google Scholar
[4] Domingo N, Pach E, Cordero-Edwards K, Perez-Dieste V, Escudero C, Verdaguer A 2019 Phys. Chem. Chem. Phys. 21 4920
Google Scholar
[5] Li X, Wang B C, Zhang T Y, Su Y J 2014 J. Phys. Chem. C 118 15910
Google Scholar
[6] Efe I, Spaldin N A, Gattinoni C 2021 J. Chem. Phys. 154 024702
Google Scholar
[7] Chornik B, Fuenzalida V A, Grahmann C R, Labbe R 1997 Vacuum 48 161
Google Scholar
[8] Wegmann M, Watson L, Hendry A 2004 J. Am. Ceram. Soc. 87 371
Google Scholar
[9] Fuenzalida V M, Pilleux M E, Eisele I 1999 Vacuum 55 81
Google Scholar
[10] Wang J L, Gaillard F, Pancotti A, Gautier B, Niu G, Vilquin B, Pillard V, Rodrigues G L M P, Barrett N 2012 J. Phys. Chem. C 116 21802
Google Scholar
[11] Lee H, Kim T H, Patzner J J, Lu H, Lee J W, Zhou H, Chang W, Mahanthappa M K, Tsymbal E Y, Gruverman A, Eom C B 2016 Nano Lett. 16 2400
Google Scholar
[12] Song W, Salvador P A, Rohrer G S 2018 Surface Sci. 675 83
Google Scholar
[13] Shin J, Nascimento V B, Geneste G, Rundgren J, Plummer E W, Dkhil B, Kalinin S V, Baddorf A P 2009 Nano Lett. 9 3720
Google Scholar
[14] Pierre-Marie D, Bruno D, Céline D 2020 Phys. Rev. B 101 075410
Google Scholar
[15] Marra W C, Eisenberger P, Cho A Y 1979 J. Appl. Phys. 50 6927
Google Scholar
[16] Dosch H, Batterman B W, Wack D C 1986 Phys. Rev. Lett. 56 1144
Google Scholar
[17] Marti X, Ferrer P, Herrero-Albillos J, Narvaez J, Holy V, Barrett N, Alexe M, Catalan G 2011 Phys. Rev. Lett. 106 236101
Google Scholar
[18] Song C Y, Gao J C, Liu J C, Yang Y B, Tian C F, Hong J W, Weng H M, Zhang J X 2020 ACS Appl. Mater. Interfaces 12 4150
Google Scholar
[19] Barabanova E V, Ivanova A I, Malyshkina O V, Vinogradova Y K, Akbaeva G M 2021 Ferroelectrics 574 37
Google Scholar
[20] Li X L, Lu H B, Li M, Mai Z H, Kim H, Jia Q J 2008 Appl. Phys. Lett. 92 012902
Google Scholar
[21] Li X L, Lu H B, Li M, Mai Z H, Kim H 2008 J. Appl. Phys. 103 054109
Google Scholar
[22] Yang T Y, Zhang X M, Chen B, Guo H Z, Jin K J, Wu X S, Gao X Y, Li Z, Wang C, Li X L 2017 ACS Appl. Mater. Interfaces 9 5600
Google Scholar
[23] Lee D, Yoon A, Jang S Y, Yoon J G, Chung J S, Kim M, Scott J F, Noh T W 2011 Phys. Rev. Lett. 107 057602
Google Scholar
[24] Kalinin S V, Bonnell D A 2001 Phys. Rev. B 63 125411
Google Scholar
[25] Tian Y, Wei L Y, Zhang Q H, Huang H B, Zhang Y L, Zhou H, Ma F J, Gu L, Meng S, Chen L Q, Nan C W, Zhang J X 2018 Nat. Commun. 9 3809
Google Scholar
Catalog
Metrics
- Abstract views: 2340
- PDF Downloads: 56
- Cited By: 0