-
Image, as a method of information acquisition, is indispensable for human beings, and it plays an irreplaceable role in military and civilian fields, such as detection and scouting, precision guidance, transportation, and industrial production. In the outdoor environment, the resolution, signal-to-noise ratio, and working distance of optical imaging are limited as result of the influence of background light, stray light, and atmospheric medium. In recent years, with the development of muti-discipline such as optics, physics, information theory, and computer science, the new optical imaging technologies continue to emerge, thus bringing new opportunities for outdoor optical imaging towards long-distance, large field of view and high information flux. As one of the new active imaging technologies, correlation imaging has the potential applications of robustness against turbulence and noise, and the possibility of beating the Rayleigh limit. It can deal with the problems better, such as sharp attenuation of optical power caused by long distances, detection of interference signals from environmental noise, and influence of turbulence. Based on the principle of optical imaging, this paper analyzes the factors affecting optical imaging, in terms of resolution, signal-to-noise ratio, spatial bandwidth product, and imaging distance under outdoor environment, focusing on the research progress of outdoor correlation imaging including imaging systems, signal-to-noise screening technology and imaging algorithm. In addition, we analyze the requirements of optical imaging for longer distances and broader field of view, and consider the fundamental problems and the key technologies.
-
Keywords:
- quantum correlation imaging /
- quantum optics /
- outdoor environment /
- imaging system
[1] Li S, Cropp F, Kabra K, Lane T J, Wetzstein G, Musumeci P, Ratner D 2018 Phys. Rev. Lett 121 114801Google Scholar
[2] 韩波, 梁雅琼 2020 69 175202Google Scholar
Han B, Liang Y Q 2020 Acta Phys. Sin. 69 175202Google Scholar
[3] Mackinnon A J, Patel P K, Town R P, Edwards M J, Phillips T, Lerner S C, Price D W, Hicks D, Key M H, Hatchett S, Wilks S C, Borghesi M, Romagnani L, Kar S, Toncian T, Pretzler G, Willi O, Koenig M, Martinolli E, Lepape S, Benuzzi-Mounaix A, Audebert P, Gauthier J C, King J, Snavely R, Freeman R R, Boehlly T 2004 Rev. Sci. Instrum. 75 3531Google Scholar
[4] Mackinnon A J, Patel P K, Borghesi M, Clarke R C, Freeman R R, Habara H, Hatchett S P, Hey D, Hicks D G, Kar S, Key M H, King J A, Lancaster K, Neely D, Nikkro A, Norreys P A, Notley M M, Phillips T W, Romagnani L, Snavely R A, Stephens R B, Town R P J 2006 Phys. Rev. Lett 97 045001Google Scholar
[5] 周天益 2019 68 055201Google Scholar
Zhou T Y 2019 Acta Phys. Sin. 68 055201Google Scholar
[6] Benedetti M, Franceschini G, Azaro R, Massa A 2007 IEEE Antenn. Wirel. Pr. 6 271Google Scholar
[7] Palmeri R, Bevacqua M T, Crocco L, Isernia T, Di Donato L 2017 IEEE T. Antenn. Propag. 65 829Google Scholar
[8] 代冰, 王朋, 周宇, 游承武, 胡江胜, 杨振刚, 王可嘉, 刘劲松 2017 66 088701Google Scholar
Dai B, Wang P, Zhou Y, You C W, Hu J S, Yang Z G, Wang K J, Liu JS 2017 Acta Phys. Sin. 66 088701Google Scholar
[9] Cao B H, Zhang M Y, Fan M B, Sun F S, Liu L 2022 Chin. Opt. 15 405Google Scholar
[10] Ding Li, Ding Xi, Ye Y Y, Zhu Y M 2017 Chin. Opt. 10 114Google Scholar
[11] Saumya T, Kianoush F, Georgina C, Rohit B 2022 Appl. Spectrosc. 76 475Google Scholar
[12] 吕浩昌, 赵云驰, 杨光, 董博闻, 祁杰, 张静言, 朱照照, 孙阳, 于广华, 姜勇, 魏红祥, 王晶, 陆俊, 王志宏, 蔡建旺, 沈保根, 杨峰, 张申金, 王守国 2020 69 096801Google Scholar
Lü H C, Zhao Y C, Yang G, Dong B W, Qi J, Zhang J Y, Zhu Z Z, Sun Y, Yu G H, Jiang Y, Wei H X, Wang J, Lu J, Wang Z H, Cai J W, Shen B G, Yang F, Zhang S J, Wang S G 2020 Acta Phys. Sin. 69 096801Google Scholar
[13] Vaithilingam S, Ma T J, Furukawa Y, Wygant I O, Zhuang X, De La Zerda A, Oralkan O, Kamaya A, Gambhir S, Jeffrey R, Khuri-yakub B 2009 IEEE T. Ultrason. Ferr. 56 2411Google Scholar
[14] Tan Y, Xia K Y, Ren Q S, Li C H 2017 Opt. Express 25 8022Google Scholar
[15] Li J H, Zhang F Z, Xiang Y, Pan S L 2021 Opt. Express 29 31574Google Scholar
[16] Li S M, Cui Z Z, Ye X W, Feng J, Yang Y, He Z Q, Cong R, Zhu D, Zhang F Z, Pan S L 2020 Laser Photonics Rev. 14 1900239Google Scholar
[17] Lord Rayleigh Sec. R S 1896 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 42 167Google Scholar
[18] Abbe E 1873 Archiv für Mikroskopische Anatomie 9 413Google Scholar
[19] Zuo C, Chen Q 2022 Chin. Opt. 15 1105Google Scholar
[20] Jicha O, Pechac P, Stanislav Z, Grabner M, Kvicera V 2012 Proceed. SPIE 8535 853509Google Scholar
[21] Ronald R P, Richard J S 1994 J. Opt. Soc. Am. A 11 288Google Scholar
[22] Darryl P G 1977 J. Opt. Soc. Am. 67 390Google Scholar
[23] Hanbury Brown R, Twiss R Q 1956 Nature 177 27Google Scholar
[24] Klyshko D N 1988 Sov. Phys. Usp 31 74Google Scholar
[25] Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429Google Scholar
[26] Gatti A, Brambilla E, Lugiato L A 2003 Phys. Rev. Lett 90 133603Google Scholar
[27] Khakimov R I, Henson B M, Shin D K, Hodgman S S, Dall R G, Baldwin K G H, Truscott A G 2016 Nature 540 100Google Scholar
[28] Shapiro J H 2008 Phys. Rev. A 78 061802Google Scholar
[29] Ferri F, Magatti D, Lugiato L A, Gatti A 2010 Phys. Rev. Lett. 104 253603Google Scholar
[30] Sun B Q, Welsh S S, Edgar M P, Shapiro J H, Padgett M J 2012 Opt. Express 20 16892Google Scholar
[31] Gao Z Q, Cheng X M, Zhang L, Hu Y, Hao Q 2020 J. Opt. 22 055704Google Scholar
[32] Huo Y, He H, Chen F 2016 Appl. Opt. 55 3356Google Scholar
[33] Zhao S M, Zhuang P 2014 Chin. Phys. B 23 054203Google Scholar
[34] Lyu M, Wang W, Li G W, Zheng S S, Situ G H 2017 Sci. Rep. 7 17865Google Scholar
[35] Wang F, Wang C L, Chen M L, Gong W L, Zhang Y, Han S S, Situ G H 2022 Light-Sci. Appl. 11 1Google Scholar
[36] Zhai X, Cheng Z D, Hu Y D, Chen Y, Liang Z Y, Wei Y 2019 Opt. Commun. 448 69Google Scholar
[37] Sun S, Gu J H, Lin H Z, Jiang L, Liu W T 2019 Opt. Lett. 44 5594Google Scholar
[38] Wang Z H, Sun Y L, Liao J L, Wang C, Cao R, Jin L, Cao C Q 2021 Opt. Express 29 39342Google Scholar
[39] Yang D Y, Chang C, Wu G H, Luo B, Yin L F 2020 Appl. Sci. 10 7941Google Scholar
[40] Zha L B, Shi D F, Huang J, Yuan K, Meng W W, Yang W, Jiang R B, Chen Y F, Wang Y J 2021 Opt. Express 29 30327Google Scholar
[41] Du L K, Sun S, Jiang L, Chang C, Lin H Z, Liu W T 2023 Phys. Rev. Appl. 19 054014Google Scholar
[42] Gong W L, Zhao C Q, Yu H, Chen M L, Xu W D, Han S S 2016 Sci. Rep. 6 26133Google Scholar
[43] Deng C J, Gong W L, Han S S 2016 Opt. Express 24 25983Google Scholar
[44] Deng C J, Pan L, Wang C L, Gao X, Gong W L, Han S S 2017 Photon. Res. 5 431Google Scholar
[45] Sun M J, Edgar M P, Gibson G M, Sun B Q, Near L, Miles J. P 2016 Nat. Commun 7 12010Google Scholar
[46] Rai T, Hashim F H, Huddin A B, Lbrahim M F, Hussain A 2020 Electronics 9 741Google Scholar
[47] Xu Z H, Chen W, Penuelas J, Padgett Miles, Sun M J 2018 Opt. Express 26 2427Google Scholar
[48] Wang W Q, Zhang W F, Sai T. C, Brent E. L, Yang Q H, Wang L R, Hu X H, Wang L, Wang G X, Wang Y S, Zhao W 2017 ACS Photonics 4 1677Google Scholar
[49] Nitta K. Yano Y, Kitada C. Matoba O 2019 Appl. Sci 9 4807Google Scholar
[50] Yusuke K, Kento K, Rui T, Yasuyuki O, Yoshiaki N, and Takuo T 2019 Opt. Express 27 3817Google Scholar
[51] Cheng J 2009 Opt. Express 17 7916Google Scholar
[52] Li C, Wang T, Pu J, Zhu W, Rao R 2010 Appl. Phys. B 99 599Google Scholar
[53] Zhang P L, Gong W L, Shen X, Han S S 2010 Phys. Rev. A 82 033817Google Scholar
[54] Chen M L, Li E R, Gong W L, Bo Z W, Xu X Y, Zhao C Q, Shen X, Xu W D, Han S S 2013 Opt. Photonics J. 3 83Google Scholar
[55] Meyers R E, Deacon K S, Shih Y 2023 Appl. Phys. Lett. 122 014001.Google Scholar
[56] Gong W L, Han S S 2011 Opt. Lett. 36 394Google Scholar
[57] Hardy N D, Shapiro J H 2011 Phys. Rev. A 84 063824Google Scholar
[58] Xu Y K, Liu W T, Zhang E F, Li Q, Dai H Y, Chen P X 2015 Opt. Express 23 32993Google Scholar
[59] Meyers R E, Deacon K S, Tunick A D 2012 Appl. Phys. Lett. 100 061126Google Scholar
[60] Gao Z, Yin J, Bai Y, Fu X 2020 Appl. Opt. 59 8472Google Scholar
[61] Shi D F, Fan C Y, Zhang P F, Zhang J H, Shen H, Qiao C H, Wang Y J 2012 Opt. Express 20 27992Google Scholar
[62] Li Y Z, Deng C J, Gong W L, Han S S 2021 Acta Opt. Sin. 41 1511004Google Scholar
[63] Yuan Y, Chen H 2022 New J. Phys. 24 043034Google Scholar
[64] Lin L X, Cao J, Zhou D, Cui H, Hao Q 2022 Opt. Express 30 11243Google Scholar
[65] Sun S, Nie Z W, Li Y G, Lin H Z, Liu W T, Chen P X 2022 arXiv: 2208.08644v3
[66] Li D, Yang D, Sun S, Li Y G, Jiang L, Lin H Z, Liu W T 2021 Opt. Express 29 31068Google Scholar
[67] Guan J, Cheng Y, Chang G 2017 Opt. Commun 391 82Google Scholar
[68] Sun S, Liu W T, Gu J H, Lin H Z, Jiang L, Xu Y K, Chen P X 2019 Opt. Lett. 44 5993Google Scholar
[69] Gong W L 2015 Photonics Res. 3 234Google Scholar
[70] Zhang C, Guo S X, Cao J S, Guan J, Gao F L 2014 Opt. Express 22 30063Google Scholar
[71] Katz O, Bromberg Y, Silberberg Y 2009 App. Phys. Lett 95 131110.Google Scholar
[72] Zhang X, Meng X F, Yang X L, Wang Y R, Yin Y K, Li X Y, Peng X, He W H, Dong G Y, Chen H Y 2018 Opt. Express 26 12948Google Scholar
[73] 白旭, 李永强, 赵生妹 2013 62 044209Google Scholar
Bai X, Li Y Q, Zhao S M 2013 Acta Phys. Sin. 62 044209Google Scholar
[74] Shimobaba T, Endo Y, Nishitsuji T, Takahashi T, Nagahama Y, Hasegawa S, Sano M, Hirayama R, Kakue T, Shiraki A, Ito T 2018 Opt. Commun. 413 147Google Scholar
[75] Higham C F, Murray-Smith R, Padgett M J, Edgar M P 2018 Sci. Rep. 8 2369Google Scholar
-
图 7 不同天气条件下直接成像与关联成像图像对比, 其中(a)—(e)分别代表晴朗、多云、小雨、中雾、夜晚天气对应; (1)—(4)分别对应实地场景、传统成像、关联成像、基于总变分约束的关联成像[54]
Figure 7. Comparison of images between two imaging method in different weather: (a) Clear; (b) cloudy; (c) light rain; (d) moderately foggy; (e) night. Where (1) scenes of field experimental, (2) traditional imaging, (3) ghost imaging, (4) ghost imaging by TV (total variation)[54]
图 8 双缝直接成像与关联成像结果, 从(a)到(f)对应散射强度逐渐增加, β= 100%, 33.26%, 12.14%, 6.44%, 3.16%, 1.28%,
$ \beta $ 表示散射介质的透过率, 每一对图像的左图为关联成像结果, 右图为传统直接成像结果[58]Figure 8. Imaging results of a double slit achieved with both methods. From set (a) to (f), the strength of scattering is increasing, β = 100%, 33.26%, 12.14%, 6.44%, 3.16%, 1.28%, where
$ \beta $ shows the transmission ratio of the scattering media as a measure of strength of scattering. For each set, the left one is the result of ghost imaging and the right one is that of traditional non-correlated imaging[58].图 9 字母“A”在不同强度大气湍流下的图像 (a)—(c)湍流系数分别为2.0, 3.2, 6.8时常规关联成像图像; (d)—(f)湍流系数为2.0, 3.2, 6.8时自适应关联成像图像[61]
Figure 9. Obtained images of letter “A” under different strength atmospheric turbulence: (a)–(c) Images of convention ghost imaging at turbulence coefficient of 2.0, 3.2 and 6.8, respectively; (d)–(f) images of adaptive optical ghost imaging at turbulence coefficient 2.0, 3.2 and 6.8, respectively[61].
-
[1] Li S, Cropp F, Kabra K, Lane T J, Wetzstein G, Musumeci P, Ratner D 2018 Phys. Rev. Lett 121 114801Google Scholar
[2] 韩波, 梁雅琼 2020 69 175202Google Scholar
Han B, Liang Y Q 2020 Acta Phys. Sin. 69 175202Google Scholar
[3] Mackinnon A J, Patel P K, Town R P, Edwards M J, Phillips T, Lerner S C, Price D W, Hicks D, Key M H, Hatchett S, Wilks S C, Borghesi M, Romagnani L, Kar S, Toncian T, Pretzler G, Willi O, Koenig M, Martinolli E, Lepape S, Benuzzi-Mounaix A, Audebert P, Gauthier J C, King J, Snavely R, Freeman R R, Boehlly T 2004 Rev. Sci. Instrum. 75 3531Google Scholar
[4] Mackinnon A J, Patel P K, Borghesi M, Clarke R C, Freeman R R, Habara H, Hatchett S P, Hey D, Hicks D G, Kar S, Key M H, King J A, Lancaster K, Neely D, Nikkro A, Norreys P A, Notley M M, Phillips T W, Romagnani L, Snavely R A, Stephens R B, Town R P J 2006 Phys. Rev. Lett 97 045001Google Scholar
[5] 周天益 2019 68 055201Google Scholar
Zhou T Y 2019 Acta Phys. Sin. 68 055201Google Scholar
[6] Benedetti M, Franceschini G, Azaro R, Massa A 2007 IEEE Antenn. Wirel. Pr. 6 271Google Scholar
[7] Palmeri R, Bevacqua M T, Crocco L, Isernia T, Di Donato L 2017 IEEE T. Antenn. Propag. 65 829Google Scholar
[8] 代冰, 王朋, 周宇, 游承武, 胡江胜, 杨振刚, 王可嘉, 刘劲松 2017 66 088701Google Scholar
Dai B, Wang P, Zhou Y, You C W, Hu J S, Yang Z G, Wang K J, Liu JS 2017 Acta Phys. Sin. 66 088701Google Scholar
[9] Cao B H, Zhang M Y, Fan M B, Sun F S, Liu L 2022 Chin. Opt. 15 405Google Scholar
[10] Ding Li, Ding Xi, Ye Y Y, Zhu Y M 2017 Chin. Opt. 10 114Google Scholar
[11] Saumya T, Kianoush F, Georgina C, Rohit B 2022 Appl. Spectrosc. 76 475Google Scholar
[12] 吕浩昌, 赵云驰, 杨光, 董博闻, 祁杰, 张静言, 朱照照, 孙阳, 于广华, 姜勇, 魏红祥, 王晶, 陆俊, 王志宏, 蔡建旺, 沈保根, 杨峰, 张申金, 王守国 2020 69 096801Google Scholar
Lü H C, Zhao Y C, Yang G, Dong B W, Qi J, Zhang J Y, Zhu Z Z, Sun Y, Yu G H, Jiang Y, Wei H X, Wang J, Lu J, Wang Z H, Cai J W, Shen B G, Yang F, Zhang S J, Wang S G 2020 Acta Phys. Sin. 69 096801Google Scholar
[13] Vaithilingam S, Ma T J, Furukawa Y, Wygant I O, Zhuang X, De La Zerda A, Oralkan O, Kamaya A, Gambhir S, Jeffrey R, Khuri-yakub B 2009 IEEE T. Ultrason. Ferr. 56 2411Google Scholar
[14] Tan Y, Xia K Y, Ren Q S, Li C H 2017 Opt. Express 25 8022Google Scholar
[15] Li J H, Zhang F Z, Xiang Y, Pan S L 2021 Opt. Express 29 31574Google Scholar
[16] Li S M, Cui Z Z, Ye X W, Feng J, Yang Y, He Z Q, Cong R, Zhu D, Zhang F Z, Pan S L 2020 Laser Photonics Rev. 14 1900239Google Scholar
[17] Lord Rayleigh Sec. R S 1896 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 42 167Google Scholar
[18] Abbe E 1873 Archiv für Mikroskopische Anatomie 9 413Google Scholar
[19] Zuo C, Chen Q 2022 Chin. Opt. 15 1105Google Scholar
[20] Jicha O, Pechac P, Stanislav Z, Grabner M, Kvicera V 2012 Proceed. SPIE 8535 853509Google Scholar
[21] Ronald R P, Richard J S 1994 J. Opt. Soc. Am. A 11 288Google Scholar
[22] Darryl P G 1977 J. Opt. Soc. Am. 67 390Google Scholar
[23] Hanbury Brown R, Twiss R Q 1956 Nature 177 27Google Scholar
[24] Klyshko D N 1988 Sov. Phys. Usp 31 74Google Scholar
[25] Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429Google Scholar
[26] Gatti A, Brambilla E, Lugiato L A 2003 Phys. Rev. Lett 90 133603Google Scholar
[27] Khakimov R I, Henson B M, Shin D K, Hodgman S S, Dall R G, Baldwin K G H, Truscott A G 2016 Nature 540 100Google Scholar
[28] Shapiro J H 2008 Phys. Rev. A 78 061802Google Scholar
[29] Ferri F, Magatti D, Lugiato L A, Gatti A 2010 Phys. Rev. Lett. 104 253603Google Scholar
[30] Sun B Q, Welsh S S, Edgar M P, Shapiro J H, Padgett M J 2012 Opt. Express 20 16892Google Scholar
[31] Gao Z Q, Cheng X M, Zhang L, Hu Y, Hao Q 2020 J. Opt. 22 055704Google Scholar
[32] Huo Y, He H, Chen F 2016 Appl. Opt. 55 3356Google Scholar
[33] Zhao S M, Zhuang P 2014 Chin. Phys. B 23 054203Google Scholar
[34] Lyu M, Wang W, Li G W, Zheng S S, Situ G H 2017 Sci. Rep. 7 17865Google Scholar
[35] Wang F, Wang C L, Chen M L, Gong W L, Zhang Y, Han S S, Situ G H 2022 Light-Sci. Appl. 11 1Google Scholar
[36] Zhai X, Cheng Z D, Hu Y D, Chen Y, Liang Z Y, Wei Y 2019 Opt. Commun. 448 69Google Scholar
[37] Sun S, Gu J H, Lin H Z, Jiang L, Liu W T 2019 Opt. Lett. 44 5594Google Scholar
[38] Wang Z H, Sun Y L, Liao J L, Wang C, Cao R, Jin L, Cao C Q 2021 Opt. Express 29 39342Google Scholar
[39] Yang D Y, Chang C, Wu G H, Luo B, Yin L F 2020 Appl. Sci. 10 7941Google Scholar
[40] Zha L B, Shi D F, Huang J, Yuan K, Meng W W, Yang W, Jiang R B, Chen Y F, Wang Y J 2021 Opt. Express 29 30327Google Scholar
[41] Du L K, Sun S, Jiang L, Chang C, Lin H Z, Liu W T 2023 Phys. Rev. Appl. 19 054014Google Scholar
[42] Gong W L, Zhao C Q, Yu H, Chen M L, Xu W D, Han S S 2016 Sci. Rep. 6 26133Google Scholar
[43] Deng C J, Gong W L, Han S S 2016 Opt. Express 24 25983Google Scholar
[44] Deng C J, Pan L, Wang C L, Gao X, Gong W L, Han S S 2017 Photon. Res. 5 431Google Scholar
[45] Sun M J, Edgar M P, Gibson G M, Sun B Q, Near L, Miles J. P 2016 Nat. Commun 7 12010Google Scholar
[46] Rai T, Hashim F H, Huddin A B, Lbrahim M F, Hussain A 2020 Electronics 9 741Google Scholar
[47] Xu Z H, Chen W, Penuelas J, Padgett Miles, Sun M J 2018 Opt. Express 26 2427Google Scholar
[48] Wang W Q, Zhang W F, Sai T. C, Brent E. L, Yang Q H, Wang L R, Hu X H, Wang L, Wang G X, Wang Y S, Zhao W 2017 ACS Photonics 4 1677Google Scholar
[49] Nitta K. Yano Y, Kitada C. Matoba O 2019 Appl. Sci 9 4807Google Scholar
[50] Yusuke K, Kento K, Rui T, Yasuyuki O, Yoshiaki N, and Takuo T 2019 Opt. Express 27 3817Google Scholar
[51] Cheng J 2009 Opt. Express 17 7916Google Scholar
[52] Li C, Wang T, Pu J, Zhu W, Rao R 2010 Appl. Phys. B 99 599Google Scholar
[53] Zhang P L, Gong W L, Shen X, Han S S 2010 Phys. Rev. A 82 033817Google Scholar
[54] Chen M L, Li E R, Gong W L, Bo Z W, Xu X Y, Zhao C Q, Shen X, Xu W D, Han S S 2013 Opt. Photonics J. 3 83Google Scholar
[55] Meyers R E, Deacon K S, Shih Y 2023 Appl. Phys. Lett. 122 014001.Google Scholar
[56] Gong W L, Han S S 2011 Opt. Lett. 36 394Google Scholar
[57] Hardy N D, Shapiro J H 2011 Phys. Rev. A 84 063824Google Scholar
[58] Xu Y K, Liu W T, Zhang E F, Li Q, Dai H Y, Chen P X 2015 Opt. Express 23 32993Google Scholar
[59] Meyers R E, Deacon K S, Tunick A D 2012 Appl. Phys. Lett. 100 061126Google Scholar
[60] Gao Z, Yin J, Bai Y, Fu X 2020 Appl. Opt. 59 8472Google Scholar
[61] Shi D F, Fan C Y, Zhang P F, Zhang J H, Shen H, Qiao C H, Wang Y J 2012 Opt. Express 20 27992Google Scholar
[62] Li Y Z, Deng C J, Gong W L, Han S S 2021 Acta Opt. Sin. 41 1511004Google Scholar
[63] Yuan Y, Chen H 2022 New J. Phys. 24 043034Google Scholar
[64] Lin L X, Cao J, Zhou D, Cui H, Hao Q 2022 Opt. Express 30 11243Google Scholar
[65] Sun S, Nie Z W, Li Y G, Lin H Z, Liu W T, Chen P X 2022 arXiv: 2208.08644v3
[66] Li D, Yang D, Sun S, Li Y G, Jiang L, Lin H Z, Liu W T 2021 Opt. Express 29 31068Google Scholar
[67] Guan J, Cheng Y, Chang G 2017 Opt. Commun 391 82Google Scholar
[68] Sun S, Liu W T, Gu J H, Lin H Z, Jiang L, Xu Y K, Chen P X 2019 Opt. Lett. 44 5993Google Scholar
[69] Gong W L 2015 Photonics Res. 3 234Google Scholar
[70] Zhang C, Guo S X, Cao J S, Guan J, Gao F L 2014 Opt. Express 22 30063Google Scholar
[71] Katz O, Bromberg Y, Silberberg Y 2009 App. Phys. Lett 95 131110.Google Scholar
[72] Zhang X, Meng X F, Yang X L, Wang Y R, Yin Y K, Li X Y, Peng X, He W H, Dong G Y, Chen H Y 2018 Opt. Express 26 12948Google Scholar
[73] 白旭, 李永强, 赵生妹 2013 62 044209Google Scholar
Bai X, Li Y Q, Zhao S M 2013 Acta Phys. Sin. 62 044209Google Scholar
[74] Shimobaba T, Endo Y, Nishitsuji T, Takahashi T, Nagahama Y, Hasegawa S, Sano M, Hirayama R, Kakue T, Shiraki A, Ito T 2018 Opt. Commun. 413 147Google Scholar
[75] Higham C F, Murray-Smith R, Padgett M J, Edgar M P 2018 Sci. Rep. 8 2369Google Scholar
Catalog
Metrics
- Abstract views: 4206
- PDF Downloads: 149
- Cited By: 0