Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Opacities of ${ X}^1\Sigma^+_{\rm g}, a'{}^1\Sigma^-_{\rm u}, a{}^1\Pi_{\rm g} \text{ and } { b}^1\Pi_{\rm u}$ electronic states for nitrogen molecule

Chen Chen Zhao Guo-Peng Qi Yue-Ying Wu Yong Wang Jian-Guo

Citation:

Opacities of ${ X}^1\Sigma^+_{\rm g}, a'{}^1\Sigma^-_{\rm u}, a{}^1\Pi_{\rm g} \text{ and } { b}^1\Pi_{\rm u}$ electronic states for nitrogen molecule

Chen Chen, Zhao Guo-Peng, Qi Yue-Ying, Wu Yong, Wang Jian-Guo
PDF
HTML
Get Citation
  • Multi-reference configuration interaction (MRCI) approach with Davison size-extensivity correction (+Q) is employed to calculate the potential curves and dipole moments of ${X^1}\Sigma _{\rm{g}}^ + ,{a^\prime }^1\Sigma _{\rm{u}}^ - ,{a^1}{\Pi _{\rm{g}}}$ and $b{}^1{\Pi _{\rm u}}$ electronic states of N2. The spectroscopic constants and vibrational level spaceings are calculated and in excellent agreement with the available theoretical results and experimental data. Based on the calculated molecular structure parameters, the opacities of N2 in a temperature range of 295–20000 K under a pressure of 100 atm (1 atm = 1.01×105 Pa) are presented. The results demonstrate that the wavelength range of absorption cross sections are enlarged with the temperature increasing. Moreover, the cross sections are mainly dominated in the range of ultraviolet for the cases with temperature T < 5000 K, while the obvious population can be found in the infrared ranges for the cases with temperature T > 10000 K due to the contribution of the excited states. The influence of temperature on the opacities of nitrogen molecule are investigated in the present work, which can provide theoretical and data support for researches of astrophysics and nuclear weapons.
      Corresponding author: Zhao Guo-Peng, guopengzhao@zjxu.edu.cn ; Wu Yong, wu_yong@iapcm.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0403200) and the National Natural Science Foundation of China (Grant No. 12105119)
    [1]

    Lin X H, Liang G Y, Wang J G, Peng Y G, Shao B, Li R, Wu Y 2019 Chin. Phys. B 28 053101Google Scholar

    [2]

    Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. B 29 023101Google Scholar

    [3]

    Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. Lett. 37 123101Google Scholar

    [4]

    Li R, Liang G Y, Lin X H, Zhu Y H, Zhao S T, Wu Y 2019 Chin. Phys. B 28 043102Google Scholar

    [5]

    Xu X S, Dai A Q, Peng Y G, Wu Y, Wang J G 2018 J. Quant. Spectrosc. Radiat. Transfer 206 172Google Scholar

    [6]

    马文, 靳奉涛, 袁建民 2007 56 5709Google Scholar

    Ma W, Jin F T, Yuan J M 2007 Acta Phys. Sin. 56 5709Google Scholar

    [7]

    Liu X M, Donald E S 2006 Astrophys. J. 645 1560Google Scholar

    [8]

    Bishop J, Feldman P D 2003 J. Geophys. Res. 108 1243Google Scholar

    [9]

    Strobel D F, Shemansky D E 1982 J. Geophys. Res. 87 1361Google Scholar

    [10]

    Stevens M H 2001 J. Geophys. Res. 106 3685Google Scholar

    [11]

    Vuitton V, Yelle R V, Anicich V G 2006 Astrophys. J. Lett. 647 L175Google Scholar

    [12]

    Liang M C, Heays A N, Lewis B R, Gibson S T, Yung Y L 2007 Astrophys. J. Lett. 664 L115Google Scholar

    [13]

    Knauth D C, Andersson B G, McCandliss S R, Moos H W 2004 Nature 429 636Google Scholar

    [14]

    Stark G, Huber K P, Yoshino K, Smith P L, Ito K 2005 J. Chem. Phys. 123 214303Google Scholar

    [15]

    Rothman L S, Jacquemart D, Barbe A, et al. 2005 J. Quant. Spectrosc. Radiat. Transfer 96 139Google Scholar

    [16]

    Rothman L S, Gordon I E, Barbe A, et al. 2009 J. Quant. Spectrosc. Radiat. Transfer 110 533Google Scholar

    [17]

    Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar

    [18]

    Rothman L S, Wattson R B, Gamache R, Schroeder J W, McCann A 1995 Proc. Soc. 2471 105Google Scholar

    [19]

    Rothman L S, Gordon I E, Barber R J, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A and Tennyson J 2010 J. Quant. Spectrosc. Radiat. Transfer 111 2139Google Scholar

    [20]

    Lofthus A, Krupenie P H 1977 J. Phys. Chem. Ref. Data 6 113Google Scholar

    [21]

    Stark G, Smith P L, Huber K P, Yoshino K, Ito K 1992 J. Chem. Phys. 97 4809Google Scholar

    [22]

    Haverd V E, Lewis B R, Gibson S T, Stark G 2005 J. Chem. Phys. 123 214304Google Scholar

    [23]

    Robert Wu C Y, Judge D L, Matsui T 2006 J. Geophys. Res. 111 A5Google Scholar

    [24]

    Niu M L, Heays A N, Jones S, Salumbides E J, van Dishoeck E F, De Oliveira N, Nahon L, Ubachs W 2015 J. Mol. Spectrosc. 315 137Google Scholar

    [25]

    Heays A N, Lewis B R, De Oliveira N, Ubachs W 2019 J. Chem. Phys. 151 224305Google Scholar

    [26]

    Spelsberg D, Meyer W 2001 J. Chem. Phys. 115 6438Google Scholar

    [27]

    San-Fabián E, Pastor-Abia L 2003 Theor. Chem. Acc. 110 276Google Scholar

    [28]

    Hochlaf M, Ndome H, Hammoutène D, Vervloet M 2010 J. Phys. B: At. Mol. Opt. Phys. 43 245101Google Scholar

    [29]

    Shi D H, Xing W, Sun J F, Zhu Z L, Liu Y F 2012 Int. J. Quantum Chem. 112 1323Google Scholar

    [30]

    Xin Y, Ding H B 2014 Plasma Sci. Technol. 16 104Google Scholar

    [31]

    Lavín C, Velasco A M, Martín I 2010 Chem. Phys. Lett. 487 38Google Scholar

    [32]

    Lavín C, Velasco A M 2011 Astrophys. J. 739 16Google Scholar

    [33]

    Lavín C, Velasco A M 2016 Astrophys. J. 816 58Google Scholar

    [34]

    Lavín C, Velasco A M 2017 Astrophys. J. Suppl. Ser. 229 19Google Scholar

    [35]

    Velasco A M, Lavín C 2020 Astrophys. J. 899 57Google Scholar

    [36]

    Velasco A M, Alonso J L, Redondo P, Lavín C 2021 Astrophys. J. 922 100Google Scholar

    [37]

    Qin Z, Zhao J, Liu L 2019 Mol. Phys. 117 1Google Scholar

    [38]

    Liang R H, Liu Y M, Li F Y 2021 Phys. Scr. 96 125402Google Scholar

    [39]

    Weck P F, Schweitzer A, Kirby K, Hauschildt P H, Stancil P C 2004 Astrophys. J. 613 567Google Scholar

    [40]

    Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO: a Package of ab initio Programs

    [41]

    Le Roy R J 2002 LEVEL 7.5: a Computer Program for Solving the Radial Schrodinger Equation for Bound and Quasibound Levels (University of Waterloo, Chemical Physics Research Report CP-655)

    [42]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum. Chem. 8 61Google Scholar

    [43]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053Google Scholar

    [44]

    Woon D E, Dunning T H 1995 J. Chem. Phys. 103 4572Google Scholar

    [45]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [46]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514Google Scholar

    [47]

    Moore C E 1975 Natl. Stand. Ref. Data Ser. (U.S. Natl. Bur. Stand) doc. 3 Sect. 5

    [48]

    Müller T, Dallos M, Lischka H, Dubrovay Z, Szalay P G 2001 Theor. Chem. Acc. 105 227Google Scholar

    [49]

    Falzon C T, Chong D P, Wang F 2006 J. Comput. Chem. 27 163Google Scholar

    [50]

    Li X Z, Paldus J 2008 J. Chem. Phys. 129 54104Google Scholar

    [51]

    Huber H P, Herzberg G 1979 Molecular Spectra and Molecular Structure IV Constants of Diatomic Molecules (New York: Van Nostrand) p416

    [52]

    Li X Z, Paldus J 2000 J. Chem. Phys. 113 9966Google Scholar

    [53]

    Li H, Le Roy R J 2007 J. Chem. Phys. 126 224301Google Scholar

    [54]

    Le Roy R J, Huang Y, Jary C 2006 J. Chem. Phys. 125 164310Google Scholar

    [55]

    Edwards S, Roncin J Y, Launay F, Rostas F 1993 J. Mol. Spectrosc. 162 257Google Scholar

  • 图 1  氮气分子${X^1}\Sigma _{\rm{g}}^ + ,{a^\prime }^1\Sigma _{\rm{u}}^ - ,{a^1}{\Pi _{\rm{g}}}$b1Пu电子态的势能曲线

    Figure 1.  Potential energy curves for the ${X^1}\Sigma _{\rm{g}}^ + ,{a^\prime }^1\Sigma _{\rm{u}}^ - ,{a^1}{\Pi _{\rm{g}}}$ and b1Пu states of nitrogen molecular.

    图 2  氮气分子的偶极跃迁矩阵元随核间距的变化

    Figure 2.  Transition dipole moments for different states of nitrogen molecular as a function of internuclear distance R.

    图 3  氮气分子的配分函数

    Figure 3.  The partition functions of nitrogen molecular.

    图 4  压强为100 atm时, 不同温度下氮气分子的不透明度 (a) 295 K; (b) 500 K; (c) 1000 K; (d) 2000 K

    Figure 4.  Opacities of nitrogen molecule at different temperatures under the pressure of 100 atm: (a) 295 K; (b) 500 K; (c) 1000 K; (d) 2000 K.

    图 5  压强为100 atm时, 不同温度下氮气分子的不透明度 (a) 2500 K; (b) 5000 K; (c) 10000 K; (d) 20000 K

    Figure 5.  Opacities of nitrogen molecule at different temperatures under the pressure of 100 atm: (a) 2500 K; (b) 5000 K; (c) 10000 K; (d) 20000 K.

    表 1  氮气分子的光谱常数

    Table 1.  Spectral constants of nitrogen molecular.

    StateMethod Te/cm–1ωe/cm–1ωexe/cm–1Be/cm–1ReDe/eV
    ${X^1}\Sigma _{\rm{g}}^ + $Present02357.116814.38831.99681.09859.8396
    MR-AQCC[48]023371.10199.6426
    MR-CISD[48]023421.10169.6468
    MR-CISD+Q[48]023351.10199.6489
    DFT(et-QZ3P-2D)[49]0235614.31.9861.1012
    DFT(ATZP) [49]0234613.31.9741.1045
    CCSD(T)[50]02342.814.0911.9831.1014
    CCSD[50]02356.113.9721.9871.1003
    CASSCF[30]023581.0929.82
    Expt. [20]02358.5714.3241.998241.097689.7593
    $a'{}^1\Sigma _{\rm u}^ -$Present68344.0981528.454411.44791.47941.27556.1725
    MR-AQCC[48]6776215141.28076.1230
    MR-CISD[48]6848015171.28046.0915
    MR-CISD+Q[48]6753115131.28086.1254
    DFT(et-QZ3P-2D) [49]64968.914689.711.4501.2887
    DFT(ATZP) [49]64578.2147111.11.4461.2906
    MRCI[28]690321523.611.911.47251.278
    CASSCF[30]15721.2775.81
    Expt. [20]677391530.2712.11.48011.27546.1278
    a1ПgPresent69486.4251691.401713.60991.61351.22156.04016
    MR-AQCC[48]6908616761.22665.9587
    MR-CISD[48]6956616911.22615.9568
    MR-CISD+Q[48]6895116701.22685.9617
    DFT(et-QZ3P-2D) [49]69078.0168412.41.6091.2236
    DFT(ATZP) [49]68910.6164714.01.6011.2264
    MRCI[28]699711687.513.911.60341.225
    CASSCF[30]16761.2306.30
    Expt. [20]68951.21694.213.91.61701.22035.9775
    b1ПuPresent102357.2682.0947–5.95311.39291.3191.9599
    MR-AQCC[48]1012446071.34561.9742
    MR-CISD[48]1023336321.34821.8942
    MR-CISD+Q[48]1010186001.34891.9859
    MRCI[26]101703.8681.1–8.81.437
    Expt.[20]100817.52.0265
     Expt.[51]101675634.8 1.4481.284 
    DownLoad: CSV

    表 2  氮气分子${X^1}\Sigma _{\rm{g}}^ + $态的振动能级间隔(EvEv–1)(单位: cm–1)

    Table 2.  Vibrational level spaceings (EvEv–1) (in cm–1) for ${X^1}\Sigma _{\rm{g}}^ + $ state of nitrogen molecular.

    vPresent8R RMR CCSD[52]MR-AQCC[52]MR-ACPF[53]Expt.[54]Expt.[55]
    12327.52336.52330.412328.542329.92329.9
    22299.42308.42301.812299.892301.32301.2
    32270.52279.82273.142271.182272.52272.6
    42242.02251.42244.472242.452243.82243.8
    52213.12222.52215.742213.692215.12215.0
    62184.42193.72186.982184.872186.22186.2
    72155.62164.72158.172156.012157.42157.4
    82126.62135.32129.312127.102128.42128.4
    92097.62106.02100.402098.132099.52099.5
    102068.72076.42071.432069.092070.42070.4
    112039.62046.72042.392040.022041.42041.4
    122010.32016.82013.292010.842012.12012.1
    131981.11987.01984.101981.581982.91983.0
    141951.71956.91954.831952.261953.61953.5
    151922.21927.01925.431922.791924.11924.2
    161892.71896.91895.961893.251894.61894.7
    171863.11866.71866.311863.531864.91865.1
    181833.61836.61836.551833.691835.01835.4
    191803.81806.31806.601803.681805.01805.6
    201773.61775.91774.61775.6
    211743.31745.51744.11745.7
    221712.71714.81713.31715.5
    231681.81684.01682.11685.0
    241650.51652.81650.51655.0
    251618.81621.61618.41624.0
    261586.51585.9
    271553.81552.8
    281520.81519.0
    291487.31484.7
    301453.2
    DownLoad: CSV

    表 3  氮气分子$ a'{}^1\Sigma _{\rm u}^ - $, $ a{}^1{\Pi _{\rm g}} $$ b{}^1{\Pi _{\rm u}} $态的振动能级间隔(Ev Ev–1)(单位: cm–1)

    Table 3.  Vibrational level spaceings (Ev Ev–1) (in cm–1) for $a'{}^1\Sigma _{\rm u}^ -$, $ a{}^1{\Pi _{\rm g}} $ and$ b{}^1{\Pi _{\rm u}} $ states of nitrogen molecular.

    v$ { {a} }'{}^1\Sigma _{ {\rm u} }^ - $a1Пgb1Пu
    PresentExpt.[20]PresentExpt.[20]PresentExpt.[20]
    11506.71506.241664.61666.34645.2645.4
    21482.81482.451637.61638.51710.9705.3
    31459.31458.901609.61610.77745.2747.6
    41436.01435.571581.81583.07763.7774.8
    51412.81412.471554.51555.46772.9789.6
    61389.81389.581527.31527.93776.4794.4
    71367.41366.881500.11500.49774.8791.4
    81345.01344.411473.31473.15770.5782.8
    91322.81322.101446.41445.91762.7770.2
    101300.71300.001419.71418.77752.4754.8
    111278.81278.061393.11391.77740.2737.9
    121257.11256.311366.61364.87725.2719.8
    131235.81234.701340.31338.12708.4701.0
    141214.51213.271314.21311.50689.0681.4
    151193.11191.981288.21285.03667.1660.5
    161172.01170.841262.1642.1637.9
    171151.21149.831236.4613.4612.6
    181130.41128.951210.9580.3584.0
    191109.61108.191185.3541.8551.0
    201088.81159.7
    211068.11134.0
    221047.51108.4
    231026.91082.8
    241006.21057.1
    25985.41031.2
    26964.51005.0
    27943.4978.4
    28922.3951.4
    DownLoad: CSV
    Baidu
  • [1]

    Lin X H, Liang G Y, Wang J G, Peng Y G, Shao B, Li R, Wu Y 2019 Chin. Phys. B 28 053101Google Scholar

    [2]

    Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. B 29 023101Google Scholar

    [3]

    Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. Lett. 37 123101Google Scholar

    [4]

    Li R, Liang G Y, Lin X H, Zhu Y H, Zhao S T, Wu Y 2019 Chin. Phys. B 28 043102Google Scholar

    [5]

    Xu X S, Dai A Q, Peng Y G, Wu Y, Wang J G 2018 J. Quant. Spectrosc. Radiat. Transfer 206 172Google Scholar

    [6]

    马文, 靳奉涛, 袁建民 2007 56 5709Google Scholar

    Ma W, Jin F T, Yuan J M 2007 Acta Phys. Sin. 56 5709Google Scholar

    [7]

    Liu X M, Donald E S 2006 Astrophys. J. 645 1560Google Scholar

    [8]

    Bishop J, Feldman P D 2003 J. Geophys. Res. 108 1243Google Scholar

    [9]

    Strobel D F, Shemansky D E 1982 J. Geophys. Res. 87 1361Google Scholar

    [10]

    Stevens M H 2001 J. Geophys. Res. 106 3685Google Scholar

    [11]

    Vuitton V, Yelle R V, Anicich V G 2006 Astrophys. J. Lett. 647 L175Google Scholar

    [12]

    Liang M C, Heays A N, Lewis B R, Gibson S T, Yung Y L 2007 Astrophys. J. Lett. 664 L115Google Scholar

    [13]

    Knauth D C, Andersson B G, McCandliss S R, Moos H W 2004 Nature 429 636Google Scholar

    [14]

    Stark G, Huber K P, Yoshino K, Smith P L, Ito K 2005 J. Chem. Phys. 123 214303Google Scholar

    [15]

    Rothman L S, Jacquemart D, Barbe A, et al. 2005 J. Quant. Spectrosc. Radiat. Transfer 96 139Google Scholar

    [16]

    Rothman L S, Gordon I E, Barbe A, et al. 2009 J. Quant. Spectrosc. Radiat. Transfer 110 533Google Scholar

    [17]

    Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar

    [18]

    Rothman L S, Wattson R B, Gamache R, Schroeder J W, McCann A 1995 Proc. Soc. 2471 105Google Scholar

    [19]

    Rothman L S, Gordon I E, Barber R J, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A and Tennyson J 2010 J. Quant. Spectrosc. Radiat. Transfer 111 2139Google Scholar

    [20]

    Lofthus A, Krupenie P H 1977 J. Phys. Chem. Ref. Data 6 113Google Scholar

    [21]

    Stark G, Smith P L, Huber K P, Yoshino K, Ito K 1992 J. Chem. Phys. 97 4809Google Scholar

    [22]

    Haverd V E, Lewis B R, Gibson S T, Stark G 2005 J. Chem. Phys. 123 214304Google Scholar

    [23]

    Robert Wu C Y, Judge D L, Matsui T 2006 J. Geophys. Res. 111 A5Google Scholar

    [24]

    Niu M L, Heays A N, Jones S, Salumbides E J, van Dishoeck E F, De Oliveira N, Nahon L, Ubachs W 2015 J. Mol. Spectrosc. 315 137Google Scholar

    [25]

    Heays A N, Lewis B R, De Oliveira N, Ubachs W 2019 J. Chem. Phys. 151 224305Google Scholar

    [26]

    Spelsberg D, Meyer W 2001 J. Chem. Phys. 115 6438Google Scholar

    [27]

    San-Fabián E, Pastor-Abia L 2003 Theor. Chem. Acc. 110 276Google Scholar

    [28]

    Hochlaf M, Ndome H, Hammoutène D, Vervloet M 2010 J. Phys. B: At. Mol. Opt. Phys. 43 245101Google Scholar

    [29]

    Shi D H, Xing W, Sun J F, Zhu Z L, Liu Y F 2012 Int. J. Quantum Chem. 112 1323Google Scholar

    [30]

    Xin Y, Ding H B 2014 Plasma Sci. Technol. 16 104Google Scholar

    [31]

    Lavín C, Velasco A M, Martín I 2010 Chem. Phys. Lett. 487 38Google Scholar

    [32]

    Lavín C, Velasco A M 2011 Astrophys. J. 739 16Google Scholar

    [33]

    Lavín C, Velasco A M 2016 Astrophys. J. 816 58Google Scholar

    [34]

    Lavín C, Velasco A M 2017 Astrophys. J. Suppl. Ser. 229 19Google Scholar

    [35]

    Velasco A M, Lavín C 2020 Astrophys. J. 899 57Google Scholar

    [36]

    Velasco A M, Alonso J L, Redondo P, Lavín C 2021 Astrophys. J. 922 100Google Scholar

    [37]

    Qin Z, Zhao J, Liu L 2019 Mol. Phys. 117 1Google Scholar

    [38]

    Liang R H, Liu Y M, Li F Y 2021 Phys. Scr. 96 125402Google Scholar

    [39]

    Weck P F, Schweitzer A, Kirby K, Hauschildt P H, Stancil P C 2004 Astrophys. J. 613 567Google Scholar

    [40]

    Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO: a Package of ab initio Programs

    [41]

    Le Roy R J 2002 LEVEL 7.5: a Computer Program for Solving the Radial Schrodinger Equation for Bound and Quasibound Levels (University of Waterloo, Chemical Physics Research Report CP-655)

    [42]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum. Chem. 8 61Google Scholar

    [43]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053Google Scholar

    [44]

    Woon D E, Dunning T H 1995 J. Chem. Phys. 103 4572Google Scholar

    [45]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [46]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514Google Scholar

    [47]

    Moore C E 1975 Natl. Stand. Ref. Data Ser. (U.S. Natl. Bur. Stand) doc. 3 Sect. 5

    [48]

    Müller T, Dallos M, Lischka H, Dubrovay Z, Szalay P G 2001 Theor. Chem. Acc. 105 227Google Scholar

    [49]

    Falzon C T, Chong D P, Wang F 2006 J. Comput. Chem. 27 163Google Scholar

    [50]

    Li X Z, Paldus J 2008 J. Chem. Phys. 129 54104Google Scholar

    [51]

    Huber H P, Herzberg G 1979 Molecular Spectra and Molecular Structure IV Constants of Diatomic Molecules (New York: Van Nostrand) p416

    [52]

    Li X Z, Paldus J 2000 J. Chem. Phys. 113 9966Google Scholar

    [53]

    Li H, Le Roy R J 2007 J. Chem. Phys. 126 224301Google Scholar

    [54]

    Le Roy R J, Huang Y, Jary C 2006 J. Chem. Phys. 125 164310Google Scholar

    [55]

    Edwards S, Roncin J Y, Launay F, Rostas F 1993 J. Mol. Spectrosc. 162 257Google Scholar

  • [1] Xing Wei, Li Sheng-Zhou, Sun Jin-Feng, Cao Xu, Zhu Zun-Lue, Li Wen-Tao, Li Yue-Yi, Bai Chun-Xu. Theoretical study on spectroscopic properties of 10 Λ-S and 26 Ω states for AlH molecule. Acta Physica Sinica, 2023, 72(16): 163101. doi: 10.7498/aps.72.20230615
    [2] Chen Chen, Zhao Guo-Peng, Qi Yue-Ying, Wu Yong, Wang Jian-Guo. Molecular opacities of $ {{\text{X}}^{2}}{\Sigma}_{\text{g}}^{+} $, A2Πu and $ {{\text{B}}^{2}}{\Sigma}_{\text{u}}^{+} $ states of nitrogen cation. Acta Physica Sinica, 2022, 71(19): 193101. doi: 10.7498/aps.71.20220734
    [3] Huang Duo-Hui, Wan Ming-Jie, Wang Fan-Hou, Yang Jun-Sheng, Cao Qi-Long, Wang Jin-Hua. Potential energy curves and spectroscopic properties of GeS molecules: in ground states and low-lying excited states. Acta Physica Sinica, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [4] Wang Jie-Min, Wang Xi-Juan, Tao Ya-Ping. Spectroscopic parameters and molecular constants of 75As32S+ and 75As34S+. Acta Physica Sinica, 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [5] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. Spectroscopic properties of BCl (X1Σ+, a3Π, A1Π) molecule. Acta Physica Sinica, 2014, 63(12): 123102. doi: 10.7498/aps.63.123102
    [6] Huang Duo-Hui, Wang Fan-Hou, Yang Jun-Sheng, Wan Ming-Jie, Cao Qi-Long, Yang Ming-Chao. Potential energy curves and spectroscopic properties of SnO (X1Σ+, a3Π and A1Π) molecule. Acta Physica Sinica, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [7] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic properties of AlC (X4∑-, B4∑-) molecule. Acta Physica Sinica, 2013, 62(11): 113101. doi: 10.7498/aps.62.113101
    [8] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. MRCI+Q study on spectroscopic parameters and molecular constants of X1Σ+ and A1Π electronic states of the SiSe molecule. Acta Physica Sinica, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [9] Li Song, Han Li-Bo, Chen Shan-Jun, Duan Chuan-Xi. Potential energy function and spectroscopic parameters of SN- molecular ion. Acta Physica Sinica, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [10] Zhu Zun-Lüe, Lang Jian-Hua, Qiao Hao. Spectroscopic properties and molecular constants of the ground and excited states of SF molecule. Acta Physica Sinica, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [11] Wang Jie-Min, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lue, Li Wen-Tao. Theoretical investigation on molecular constants of PH, PD and PT molecules. Acta Physica Sinica, 2012, 61(6): 063104. doi: 10.7498/aps.61.063104
    [12] Shi De-Heng, Niu Xiang-Hong, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic parameters and molecular constants of X1+ and a3 electronic states of BF radical. Acta Physica Sinica, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [13] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. Investigations on spectroscopic parameters and molecular constants of SO+ (b4∑-) cation. Acta Physica Sinica, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [14] Liu Hui, Xing Wei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng. Study on spectroscopic parameters and molecular constants of CS+(X2Σ+) and CS+(A2Π) by MRCI. Acta Physica Sinica, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [15] Wang Jie-Min, Sun Jin-Feng. Multireference configuration interaction study on spectroscopic parameters and molecular constants of AsN(X1 +) radical. Acta Physica Sinica, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [16] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng. Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [17] Wang Xin-Qiang, Yang Chuan-Lu, Su Tao, Wang Mei-Shan. Analytical potential energy functions and spectroscopic properties of the ground and excited states of BH molecule. Acta Physica Sinica, 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [18] Shi De-Heng, Liu Yu-Fang, Sun Jin-Feng, Zhang Jin-Ping, Zhu Zun-Lüe. Elastic collisions between O and D atoms at low temperature and accurate analytic potential energy function and molecular constants of the OD(X2Π) radical. Acta Physica Sinica, 2009, 58(4): 2369-2375. doi: 10.7498/aps.58.2369
    [19] Shi De-Heng, Zhang Jin-Ping, Sun Jin-Feng, Liu Yu-Fang, Zhu Zun-Lüe. Elastic collision between S and D atoms at low temperatures and accurate analytic interaction potential and molecular constants of the SD(X2Π) radical. Acta Physica Sinica, 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
    [20] WANG FAN-HOU, CHEN JING-PING, MENG XU-JUN, ZHOU XIAN-MING, LI XI-JUN, SUN YONG-SHENG, JING FU-QIAN. STUDIES ON OPACITY OF SHOCK-GENERATED ARGON PLASMAS. Acta Physica Sinica, 2001, 50(7): 1308-1312. doi: 10.7498/aps.50.1308
Metrics
  • Abstract views:  4284
  • PDF Downloads:  67
  • Cited By: 0
Publishing process
  • Received Date:  07 January 2022
  • Accepted Date:  17 March 2022
  • Available Online:  09 July 2022
  • Published Online:  20 July 2022

/

返回文章
返回
Baidu
map