Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Relationship between anti-blue hazard mode and color gamut of display devices

Wang Guan Gu Chun Xu Li-Xin

Citation:

Relationship between anti-blue hazard mode and color gamut of display devices

Wang Guan, Gu Chun, Xu Li-Xin
PDF
HTML
Get Citation
  • Display devices based on new generation of light source have become the mainstream of the market due to the advantages of large color gamut, high brightness, and high resolution. Blue light, as one of the three primary colors, is an indispensable part of the display system. Its parameters, such as wavelength, spectral width, brightness affect the color gamut of the display system from different aspects. Strong blue light can damage the retinal cells of the human eye and affect the biological rhythm. Therefore, it is needed to consider how to reduce the blue light hazard when designing the display system. Display devices, represented by mobile phones and TV are an important part for human-computer interaction. In order to reduce the blue light hazard, anti-blue hazard mode is usually used and this mode will affect the color gamut of display device. To measure the color gamut and blue light hazards in a display system with the blue light protection mode is necessary. We propose a theory of measuring the characteristic points of display devices to obtain the stereoscopic color gamut. Several mainstream mobile phones currently on the market are used as experimental samples to measure the stereoscopic color gamut and blue light hazard value. Based on the results, we propose the measurement standard of the conversion ratio between the color gamut and the blue light hazard to evaluate the quality of the anti-blue hazard mode.
      Corresponding author: Gu Chun, guchun@ustc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFF0307804)
    [1]

    Sun Y, Zhang C, Yang Y L, Ma H M, Sun Y B 2019 Curr. Opt. Photonics 3 590

    [2]

    Wu T Z, Sher C W, Lin Y, Lee C F, Liang S J, Lu Y J, Huang C S W, Guo W J, Kuo H C, Chen Z 2018 Appl. Sci. 8 1557Google Scholar

    [3]

    Hosoumi S, Yamaguchi T, Inoue H, Nomura S, Yamaoka R, Sasaki T, Seo S 2017 SID Symposium, Seminar, and Exhibition 2017, Display Week 2017 Los Angeles U.S.A. May 21–26, 2017 p13

    [4]

    Lin S Y, Tan G J, Yu J H, Chen E G, Weng Y L, Zhou X T, Xu S, Yan F Q, Guo T L 2019 Opt. Express 27 28480Google Scholar

    [5]

    Zhao J Y, Yan Y L, Gao Z H, Du Y X, Dong H Y, Yao J N, Zhao Y S 2019 Nat. Commun. 10 870Google Scholar

    [6]

    ITU-R Recommendation BT-2020 2012 Parameter Values for Ultra-high Definition Television Systems for Production and International Programme Exchange

    [7]

    ITU-R Recommendation BT-709 1990 Parameter values for the HDTV standards for production and international programme exchange

    [8]

    灯和灯系统的光生物安全 第2部分: 非激光光辐射安全相关的制造要求指南

    GB/T 30117.2—2013 2013 Photobiological Safety of Lamps and Lamp Systems—Part 2: Guidance on Manufacturing Requirements Relating to Non-laser Optical Radiation Safety (in Chinese)

    [9]

    BSI Standards Publication, PD IEC-TR 62741-2-2009 2009 Photobiological Safety of Lamps and Lamp Systems—Part 2: Guidance on Manufacturing Requirements Relating to Non-laser Optical Radiation Safety

    [10]

    CIE 2000 CIE Collection in Photobiology and Photochemistry 2000 138/1 CIE TC 6-14 report: Blue-light Photochemical Retinal Hazard

    [11]

    Noell W K, Walker V S, Kang B S, Berman S 1966 Invest. Ophth. 5 450

    [12]

    Ham W T, Mueller H A, Ruffolo J J, Clarke A M 1979 Photochem. Photobiol. 29 735Google Scholar

    [13]

    Wenzel A, Grimm C, Samardzijia M, Reme C E 2005 Prog. Retin. Eye Res. 24 275Google Scholar

    [14]

    Enezi J A, Revell V, Brown T, Wynne J, Schlangen L, Lucas R 2011 J. Biol. Rhythms 26 314Google Scholar

    [15]

    Brainard G C, Hanifin J P, Greeson J M, Byrne B, Glickman G, Gerner E, Rollag M D 2001 J. Neurosci. 21 6405Google Scholar

    [16]

    Baczynska K, Price L 2013 Lighting Res. Technol. 45 40Google Scholar

    [17]

    刘婕 2014 硕士学位论文 (上海: 复旦大学)

    Liu J 2014 M. S. Thesis (Shanghai: Fudan University) (in Chinese)

    [18]

    Nie J X, Chen Z Z, Jiao F, Zhan J L, Chen Y F, Chen Y Y, Pan Z J, Kang X N, Wang Y Z, Wang Q, Zhou T H, Dang W M, Dong W T, Zhou S Z, Yu X, Zhang G Y, Shen B 2021 Opt. Laser Technol. 135 106709Google Scholar

    [19]

    Zhang J J, Guo W H, Xie B, Yu X J, Luo X B, Zhang T, Yu Z H, Wang H, Jin X 2017 Opt. Laser Technol. 94 193Google Scholar

    [20]

    Wang G, Yang Y H, Dong T H, Gu C, Xu L C 2018 Fifth International Symposium on Laser Interaction with Matter (Changsha, China) November 11–13, 2018

    [21]

    王聪 2020 硕士学位论文(合肥: 中国科学技术大学)

    Wang C 2020 M. S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)

    [22]

    中国电子技术标准化研究赛西实验室 2018 激光电视视觉健康测试证书TC(2018)016

    CESI Laboratory 2018 Testing Certificate of laser TV vision health TC(2018)016 (in Chinese)

    [23]

    Chen H W, Lee J H, Lin B Y, Chen S, Wu S T 2018 Light Sci. Appl. 7 17168Google Scholar

  • 图 1  蓝光视觉危害、非视觉危害与波长之间的关系

    Figure 1.  Relationship between blue light visual hazards, non-visual hazards and wavelength.

    图 2  (a) RGB立体框和(b) RGB立体框在CIELAB空间中的位置

    Figure 2.  (a) RGB three-dimension frame and (b) its position in CIELAB color space.

    图 3  (a)设备蓝光模式图和(b)20张测试用图片

    Figure 3.  (a)The screenshot of anti-blue hazard mode and (b) the figure of 20 experimental pictures.

    图 4  6台显示设备的色域、两种蓝光危害同防蓝光模式强度的关系, 蓝光危害通过白场光谱分布计算得到

    Figure 4.  The relationship between the color gamut of six display devices, two kinds of blue light hazards under the strength of anti-blue hazard mode. The blue light hazard is calculated from the white field spectral distribution.

    图 5  6台显示设备的光谱功率分布同防蓝光模式强度的关系

    Figure 5.  The relationship between the spectral power distribution of six display devices and the strength of anti-blue hazard mode.

    图 6  6台显示设备的色域, 两种蓝光危害比例同防蓝光模式强度的关系

    Figure 6.  The relationship between the ratio of the color gamut of six display devices, the ratio of two kinds of blue light hazards under the strength of anti-blue hazard mode.

    图 7  不同显示设备的$ {R}_{\text{V}} $-$ {R}_{\text{B}} $以及$ {R}_{\text{V}} $-$ {R}_{\text{N}} $曲线

    Figure 7.  $ {R}_{\text{V}} $-$ {R}_{\text{B}}{R}_{B} $ and $ {R}_{\text{V}} $-$ {R}_{\text{N}} $ curves of different display devices.

    图 8  显示设备的色域, 色温同防蓝光模式强度的关系

    Figure 8.  The relationship among the color gamut, color temperature of the display device and the intensity of the anti-blue light mode.

    图 9  防蓝光模式强度的变化对激光电视参数的影响 (a) 光谱强度分布, 三基色中心波长分别为464 nm, 520 nm, 660 nm; (b)色域及两种蓝光危害, 蓝光危害通过白场光谱强度分布计算得到; $ \left(\text{c}\right){R}_{\text{V}}, {R}_{\text{B}}, {R}_{\text{N}} $参数; (d)色域-色温曲线

    Figure 9.  The influence of the strength of the anti-blue hazard mode on the parameters of laser TV: (a)Spectral power distribution, the peak wavelength of three primaries are 464 nm, 520 nm and 660 nm;(b)color gamut and two kinds of blue hazard, the blue light hazard is calculated from the white field spectral distribution; (c)$ {R}_{\text{V}}, {R}_{\text{B}}, {R}_{\text{N}} $ parameter;(d) color gamut-color temperature curve.

    图 10  激光电视和实验设备的对比图 (a)色域与视觉蓝光危害的兑换比例; (b)色域与非视觉蓝光危害的兑换比例; (c)设备色域

    Figure 10.  The comparison of laser TV and experimental device: (a)Conversion ratio between color gamut and visual blue light hazard; (b) conversion ratio between color gamut and non-visual blue light hazard; (c)color gamut.

    表 1  $ {L}_{\text{B}} $$ {E}_{\text{B}} $与蓝光危害等级的关系

    Table 1.  The relationship between $ {L}_{\text{B}} $, $ {E}_{\text{B}} $ and the blue light hazard level.

    危害等级IR0IR1IR2IR3
    ${{L} }_{\rm{B} }/$(${\rm{W} }{\cdot}{\rm{m} }^{-2}{\cdot} {\rm{s}{\rm{r} } }^{-1}$) ≤ 100${100—10}^{4}$${10}^{4}—4\times {10}^{6}$ > $ 4\times {10}^{6} $
    ${{E} }_{\rm{B} }/$(${\rm{W} }{\cdot}{\rm{m} }^{-2}$) ≤ 800${800—10}^{3}$${10}^{3}—4\times {10}^{5}$ > $ 4\times {10}^{5} $
    DownLoad: CSV

    表 2  几种设备的相关参数

    Table 2.  The parameters of experimental device.

    设备编号屏幕种类发布年份
    (1)液晶2019
    (2)OLED2020
    (3)OLED2020
    (4)液晶2019
    (5)OLED2021
    (6)LED2018
    DownLoad: CSV

    表 3  6台显示器色域和两种蓝光危害比例的线性拟合及相关系数

    Table 3.  Linear fitting and correlation coefficients of 6 display devices, between the ratio of color gamut and the ratio of two kinds of blue light hazards.

    设备编号$ {\boldsymbol{R}}_{\bf{V}} $-$ {\boldsymbol{R}}_{\bf{B}} $斜率相关系数$ {\boldsymbol{R}}_{\bf{V}} $-$ {\boldsymbol{R}}_{\bf{N}} $斜率相关系数
    (1)2.34970.92651.77960.9511
    (2)1.45910.99691.20030.9955
    (3)1.73350.97481.38750.9788
    (4)1.78650.99431.37260.9970
    (5)1.58590.92421.25320.9598
    (6)1.26950.92231.07240.9513
    DownLoad: CSV
    Baidu
  • [1]

    Sun Y, Zhang C, Yang Y L, Ma H M, Sun Y B 2019 Curr. Opt. Photonics 3 590

    [2]

    Wu T Z, Sher C W, Lin Y, Lee C F, Liang S J, Lu Y J, Huang C S W, Guo W J, Kuo H C, Chen Z 2018 Appl. Sci. 8 1557Google Scholar

    [3]

    Hosoumi S, Yamaguchi T, Inoue H, Nomura S, Yamaoka R, Sasaki T, Seo S 2017 SID Symposium, Seminar, and Exhibition 2017, Display Week 2017 Los Angeles U.S.A. May 21–26, 2017 p13

    [4]

    Lin S Y, Tan G J, Yu J H, Chen E G, Weng Y L, Zhou X T, Xu S, Yan F Q, Guo T L 2019 Opt. Express 27 28480Google Scholar

    [5]

    Zhao J Y, Yan Y L, Gao Z H, Du Y X, Dong H Y, Yao J N, Zhao Y S 2019 Nat. Commun. 10 870Google Scholar

    [6]

    ITU-R Recommendation BT-2020 2012 Parameter Values for Ultra-high Definition Television Systems for Production and International Programme Exchange

    [7]

    ITU-R Recommendation BT-709 1990 Parameter values for the HDTV standards for production and international programme exchange

    [8]

    灯和灯系统的光生物安全 第2部分: 非激光光辐射安全相关的制造要求指南

    GB/T 30117.2—2013 2013 Photobiological Safety of Lamps and Lamp Systems—Part 2: Guidance on Manufacturing Requirements Relating to Non-laser Optical Radiation Safety (in Chinese)

    [9]

    BSI Standards Publication, PD IEC-TR 62741-2-2009 2009 Photobiological Safety of Lamps and Lamp Systems—Part 2: Guidance on Manufacturing Requirements Relating to Non-laser Optical Radiation Safety

    [10]

    CIE 2000 CIE Collection in Photobiology and Photochemistry 2000 138/1 CIE TC 6-14 report: Blue-light Photochemical Retinal Hazard

    [11]

    Noell W K, Walker V S, Kang B S, Berman S 1966 Invest. Ophth. 5 450

    [12]

    Ham W T, Mueller H A, Ruffolo J J, Clarke A M 1979 Photochem. Photobiol. 29 735Google Scholar

    [13]

    Wenzel A, Grimm C, Samardzijia M, Reme C E 2005 Prog. Retin. Eye Res. 24 275Google Scholar

    [14]

    Enezi J A, Revell V, Brown T, Wynne J, Schlangen L, Lucas R 2011 J. Biol. Rhythms 26 314Google Scholar

    [15]

    Brainard G C, Hanifin J P, Greeson J M, Byrne B, Glickman G, Gerner E, Rollag M D 2001 J. Neurosci. 21 6405Google Scholar

    [16]

    Baczynska K, Price L 2013 Lighting Res. Technol. 45 40Google Scholar

    [17]

    刘婕 2014 硕士学位论文 (上海: 复旦大学)

    Liu J 2014 M. S. Thesis (Shanghai: Fudan University) (in Chinese)

    [18]

    Nie J X, Chen Z Z, Jiao F, Zhan J L, Chen Y F, Chen Y Y, Pan Z J, Kang X N, Wang Y Z, Wang Q, Zhou T H, Dang W M, Dong W T, Zhou S Z, Yu X, Zhang G Y, Shen B 2021 Opt. Laser Technol. 135 106709Google Scholar

    [19]

    Zhang J J, Guo W H, Xie B, Yu X J, Luo X B, Zhang T, Yu Z H, Wang H, Jin X 2017 Opt. Laser Technol. 94 193Google Scholar

    [20]

    Wang G, Yang Y H, Dong T H, Gu C, Xu L C 2018 Fifth International Symposium on Laser Interaction with Matter (Changsha, China) November 11–13, 2018

    [21]

    王聪 2020 硕士学位论文(合肥: 中国科学技术大学)

    Wang C 2020 M. S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)

    [22]

    中国电子技术标准化研究赛西实验室 2018 激光电视视觉健康测试证书TC(2018)016

    CESI Laboratory 2018 Testing Certificate of laser TV vision health TC(2018)016 (in Chinese)

    [23]

    Chen H W, Lee J H, Lin B Y, Chen S, Wu S T 2018 Light Sci. Appl. 7 17168Google Scholar

  • [1] Tai Jian-Peng, Guo Wei-Ling, Li Meng-Mei, Deng Jie, Chen Jia-Xin. GaN based micro-light-emitting diode size effect and array display. Acta Physica Sinica, 2020, 69(17): 177301. doi: 10.7498/aps.69.20200305
    [2] Pan Zuo-Jian, Chen Zhi-Zhong, Jiao Fei, Zhan Jing-Lin, Chen Yi-Yong, Chen Yi-Fan, Nie Jing-Xin, Zhao Tong-Yang, Deng Chu-Han, Kang Xiang-Ning, Li Shun-Feng, Wang Qi, Zhang Guo-Yi, Shen Bo. A review of key technologies for epitaxy and chip process of micro light-emitting diodes in display application. Acta Physica Sinica, 2020, 69(19): 198501. doi: 10.7498/aps.69.20200742
    [3] Mei Yi-Feng, Tang Yuan-He, Mei Xiao-Ning, Liu Han-Chen, Liu Qian, Yu Yang, Li Nin-Yuan, Gao Heng. Writing and displaying by the laser on a long lag phosphor material. Acta Physica Sinica, 2016, 65(17): 170701. doi: 10.7498/aps.65.170701
    [4] Zeng Chao, Gao Hong-Yue, Liu Ji-Cheng, Yu Ying-Jie, Yao Qiu-Xiang, Liu Pan, Zheng Hua-Dong, Zeng Zhen-Xiang. Latest developments of dynamic holographic three-dimensional display. Acta Physica Sinica, 2015, 64(12): 124215. doi: 10.7498/aps.64.124215
    [5] Fu Jia, Yi Shi-He, Wang Xiao-Hu, Zhang Qing-Hu, He Lin. Experimental study on flow visualization of hypersonic flat plate boundary layer. Acta Physica Sinica, 2015, 64(1): 014704. doi: 10.7498/aps.64.014704
    [6] Xia Jun, Chang Chen-Liang, Lei Wei. Holographic display based on liquid crystal spatial light modulator. Acta Physica Sinica, 2015, 64(12): 124213. doi: 10.7498/aps.64.124213
    [7] Wu Yu, Yi Shi-He, He Lin, Quan Peng-Cheng, Zhu Yang-Zhu. Quantitative analysis of flow structures in compression ramp based on flow visualization. Acta Physica Sinica, 2015, 64(1): 014703. doi: 10.7498/aps.64.014703
    [8] Xin Cheng-Yun, Cheng Xiao-Fang, Zhang Zhong-Zheng. Primary spectrum pyrometry based on radiation measurement within a finite solid angle. Acta Physica Sinica, 2013, 62(3): 030702. doi: 10.7498/aps.62.030702
    [9] Lü Jiang-Tao, Zhao Yu-Qian, Song Ai-Juan, Yang Lin-Juan, Zhang Yang-Yu, Liu Yan, Gu Qiong-Chan, Jiang Xiao-Xiao, Ma Zhen-He, Wang Feng-Wen, Si Guang-Yuan. Tuning surface plasmons in nanorod arrays with ultrasmall spacing. Acta Physica Sinica, 2013, 62(23): 237806. doi: 10.7498/aps.62.237806
    [10] Wang Fang, Zhao Xing, Yang Yong, Fang Zhi-Liang, Yuan Xiao-Cong. Comparison of the resolutions of integral imaging three-dimensional display based on human vision. Acta Physica Sinica, 2012, 61(8): 084212. doi: 10.7498/aps.61.084212
    [11] Zhang Bao-Long, Li Dan, Dai Feng-Zhi, Yang Shi-Feng, Hoising Kwok. Three-dimensional optical modeling of color filter liquid-crystal-on-silicon microdisplays. Acta Physica Sinica, 2012, 61(4): 040701. doi: 10.7498/aps.61.040701
    [12] Zheng Hua-Dong, Yu Ying-Jie, Dai Lin-Mao, Wang Tao. Correction method for phase-modulation deviation of liquid crystal spatial light modulator in full-color holographic display. Acta Physica Sinica, 2010, 59(9): 6145-6151. doi: 10.7498/aps.59.6145
    [13] Chang Hong, Yang Fu-Gui, Dong Lei, Wang An-Ting, Xie Jian-Ping, Ming Hai. Effect of structure and size of laser spot on speckle contrast in laser scanning display. Acta Physica Sinica, 2010, 59(7): 4634-4639. doi: 10.7498/aps.59.4634
    [14] Ma Yan-Ping, Shang Xue-Fu, Gu Zhi-Qi, Li Zhen-Hua, Wang Miao, Xu Ya-Bo. The application of single-walled carbon nanotubes in field emission display. Acta Physica Sinica, 2007, 56(11): 6701-6704. doi: 10.7498/aps.56.6701
    [15] Yuan Bao-Shan, You Tian-Xue, Liu Li, Li Fang-Zhu, Yang Qing-Wei, Fen Bei-Bin. Real-time visualization system of plasma shape for HL-2A. Acta Physica Sinica, 2006, 55(5): 2403-2408. doi: 10.7498/aps.55.2403
    [16] Li Xin-Bei, Zhang Fang-Hui, Wang Xiu-Feng. Electric field distribution in surface-conduction electron-emitter display. Acta Physica Sinica, 2006, 55(11): 6141-6146. doi: 10.7498/aps.55.6141
    [17] LIU JIAN, XIE JU-SHAN, FENG SHANG-TING, ZHANG GUANG-YIN, WU ZHONG-KANG. DIRECT DISPLAY OF THE ACCUMULATION OF SPACE CHARGES IN ONE-DIMENSIONAL IONIC CONDUCTOR α-LiIO3. Acta Physica Sinica, 1987, 36(9): 1199-1202. doi: 10.7498/aps.36.1199
    [18] MA KE-JUN, YU ZHEN-ZHONG, JIN GANG, CAO JU-YING. DISLOCATION ETCH PITS ON THE {111} CRYSTAL PLANE OF InSb FORMED BY HCl-Fe+++ SOLUTION. Acta Physica Sinica, 1982, 31(9): 1285-1288. doi: 10.7498/aps.31.1285
    [19] ZHANG SEN, FENG GUO-LIANG, WEI ZHANG-FU, GU GEN-QING. X-RAY STEREOSCOPIC IMAGE DISPLAY. Acta Physica Sinica, 1981, 30(9): 1264-1269. doi: 10.7498/aps.30.1264
    [20] . Acta Physica Sinica, 1963, 19(7): 475-476. doi: 10.7498/aps.19.475
Metrics
  • Abstract views:  4919
  • PDF Downloads:  71
  • Cited By: 0
Publishing process
  • Received Date:  21 December 2021
  • Accepted Date:  26 January 2022
  • Available Online:  21 February 2022
  • Published Online:  20 May 2022

/

返回文章
返回
Baidu
map