Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Physical mechanism of London moment

Wu Yue Xiao Li-Ye

Citation:

Physical mechanism of London moment

Wu Yue, Xiao Li-Ye
PDF
HTML
Get Citation
  • The superconductor will generate a magnetic field inside the superconductor during its rotation, which is called the London moment. At present, a variety of theories including London theory and G-L theory have explained the generation mechanism of London moment. Most of these theories essentially believe that the superconducting electrons in the surface layer of the rotating superconductor lag behind and have a net residual current. The London moment is produced by the net residual current on the surface of the rotating superconductor. However, there is still no clear theoretical explanation for the motion lag of the outermost superconducting electrons in rotating superconductors. In this paper the charged particles in the rotating system and the Berry phase of the superconductor in the rotating superconductor are analyzed. The results show that the Berry curvature of the superconductor has the same expression form as the London moment, indicating that the London moment may be the inverse effect of A-B effect, which is a macroscopic quantum effect based on Berry phase.
      Corresponding author: Xiao Li-Ye, xiao@mail.iee.ac.cn
    • Funds: Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51721005), and The Institute of Electrical Engineering, CAS(Grant No. 2021000038).
    [1]

    Kammerligh Onnes H 1911 Leiden. Commun. 122 122

    [2]

    Meissner W, Ochsenfel R 1933 Sci. Nat. 21 44Google Scholar

    [3]

    Johephson B D 1962 Phys. Lett. 1 251Google Scholar

    [4]

    林良真 1994 电工电能新技术 3 25

    Lin L Z 1994 Adv. Technol. Electr. Eng. Energy 3 25

    [5]

    Vodel W, Makiniemi K. 1992 Meas. Sci. Technol. 3 12

    [6]

    Welty R P, Martinis J M 1991 IEEE. Trans. Magn. 27 2

    [7]

    Becker R, Heller G, Sauter F 1933 Kugel Z. Phys. 85 772Google Scholar

    [8]

    London F 1960 Superfluids 1 78

    [9]

    Rystephanick R G 1976 Am. J. Phys. 44 647Google Scholar

    [10]

    Capellmann H 2002 Eur. Phys. J. B 25 25

    [11]

    欧阳世根, 关毅, 佘卫龙 2002 51 1596Google Scholar

    Ouyang S G, Guan Y, She W L 2002 Acta Phys. Sin. 51 1596Google Scholar

    [12]

    Lipavsky P, Bok J, Kolacek J 2013 Physica C 492 144Google Scholar

    [13]

    Hirsch J E 2019 Ann. Phys. 531 10

    [14]

    Hirsch J E 2019 Phys. Lett. A 383 1Google Scholar

    [15]

    Hirsch J E 2014 Phys. Scr. 89 015806Google Scholar

    [16]

    Hirsch J E 2007 Phys. Lett. A 366 615Google Scholar

    [17]

    Tajmar M, de Matos C J 2003 Physica C 385 551Google Scholar

    [18]

    Tajmar M, de Matos C J 2005 Physica C 420 1Google Scholar

    [19]

    Tajmar M, De Matos C J 2001 J. Theor. 3 1

    [20]

    Ross D K 1983 J. Phys. A:Math. Theor. 16 1331

    [21]

    Hildebrandt AF 1964 Phys. Rev. Lett. 12 8

    [22]

    Brickman N F 1969 Phys. Rev. 184 2

    [23]

    Verheijen A A 1990 Physica B 165 6

    [24]

    Sanzari M A, Cui H L, Karwacki F 1996 Appl. Phys. Lett. 68 3802Google Scholar

    [25]

    谢晓明, 孙越 2008 稀有金属材料与工程 37 420

    Xie X M, Sun Y 2008 Rare. Met. Mater. Eng. 37 420

    [26]

    Jachmann F, Hucho C 2007 Solid. State. Commun. 142 212Google Scholar

    [27]

    Fil V D, Fil D V, Zholobenko A N, Burma N G, Avramenko Y A, Kim J D, Choi S M, Lee S I 2006 Europhys. Lett. 76 3

    [28]

    Gawlinski E T 1993 Phys. Rev. B 48 351Google Scholar

    [29]

    Liu M 1998 Phys. Rev. Lett. 81 15

    [30]

    Tate J, Cabrera B, Felch S B, Anderson J T 1989 Phys. Rev. Lett. 62 845Google Scholar

    [31]

    Hipkins D, Felson W, Xiao Y M 1996 Czech. J. Phys. 46 2871Google Scholar

    [32]

    Hoang L P, Le D N, Pham D A, Nguyen T K C, Nguyen T m A, Ngo X C, Hoang T D, Nguyen T B and Cao B X 2019 Mater. Lett. 262 127176

    [33]

    Cabrera B, Gutfreund H, Little W A 1982 Phys. Rev. B 25 11

    [34]

    Berry M V 1984 Proc. R. Soc. London, Ser. A. 391 45

    [35]

    P. G. 德热纳 2013 金属与合金的超导电性 (北京: 高等教育出版社) 第107页

    De Gennes P G 2013 Superconductivity of Metals and Alloys (Beijing: Higher Education Press) p107 (in Chinese)

    [36]

    Koizumi H 2021 J. Supercond. Nov. Magn. 34 5

  • 图 1  旋转超导体示意图

    Figure 1.  Schematic diagram of rotating superconductor.

    图 2  常规导体与超导体旋转过程中内部电子贝里相位变化示意图. 图中常规导体与超导体内部的半圆形箭头表示旋转过程中电子产生的贝里相位

    Figure 2.  Schematic diagram of the Berry phase during the rotation of conventional conductors and superconductors. The semicircular arrows inside the conventional conductor and superconductor in the figure represent the Berry phase of electronics.

    Baidu
  • [1]

    Kammerligh Onnes H 1911 Leiden. Commun. 122 122

    [2]

    Meissner W, Ochsenfel R 1933 Sci. Nat. 21 44Google Scholar

    [3]

    Johephson B D 1962 Phys. Lett. 1 251Google Scholar

    [4]

    林良真 1994 电工电能新技术 3 25

    Lin L Z 1994 Adv. Technol. Electr. Eng. Energy 3 25

    [5]

    Vodel W, Makiniemi K. 1992 Meas. Sci. Technol. 3 12

    [6]

    Welty R P, Martinis J M 1991 IEEE. Trans. Magn. 27 2

    [7]

    Becker R, Heller G, Sauter F 1933 Kugel Z. Phys. 85 772Google Scholar

    [8]

    London F 1960 Superfluids 1 78

    [9]

    Rystephanick R G 1976 Am. J. Phys. 44 647Google Scholar

    [10]

    Capellmann H 2002 Eur. Phys. J. B 25 25

    [11]

    欧阳世根, 关毅, 佘卫龙 2002 51 1596Google Scholar

    Ouyang S G, Guan Y, She W L 2002 Acta Phys. Sin. 51 1596Google Scholar

    [12]

    Lipavsky P, Bok J, Kolacek J 2013 Physica C 492 144Google Scholar

    [13]

    Hirsch J E 2019 Ann. Phys. 531 10

    [14]

    Hirsch J E 2019 Phys. Lett. A 383 1Google Scholar

    [15]

    Hirsch J E 2014 Phys. Scr. 89 015806Google Scholar

    [16]

    Hirsch J E 2007 Phys. Lett. A 366 615Google Scholar

    [17]

    Tajmar M, de Matos C J 2003 Physica C 385 551Google Scholar

    [18]

    Tajmar M, de Matos C J 2005 Physica C 420 1Google Scholar

    [19]

    Tajmar M, De Matos C J 2001 J. Theor. 3 1

    [20]

    Ross D K 1983 J. Phys. A:Math. Theor. 16 1331

    [21]

    Hildebrandt AF 1964 Phys. Rev. Lett. 12 8

    [22]

    Brickman N F 1969 Phys. Rev. 184 2

    [23]

    Verheijen A A 1990 Physica B 165 6

    [24]

    Sanzari M A, Cui H L, Karwacki F 1996 Appl. Phys. Lett. 68 3802Google Scholar

    [25]

    谢晓明, 孙越 2008 稀有金属材料与工程 37 420

    Xie X M, Sun Y 2008 Rare. Met. Mater. Eng. 37 420

    [26]

    Jachmann F, Hucho C 2007 Solid. State. Commun. 142 212Google Scholar

    [27]

    Fil V D, Fil D V, Zholobenko A N, Burma N G, Avramenko Y A, Kim J D, Choi S M, Lee S I 2006 Europhys. Lett. 76 3

    [28]

    Gawlinski E T 1993 Phys. Rev. B 48 351Google Scholar

    [29]

    Liu M 1998 Phys. Rev. Lett. 81 15

    [30]

    Tate J, Cabrera B, Felch S B, Anderson J T 1989 Phys. Rev. Lett. 62 845Google Scholar

    [31]

    Hipkins D, Felson W, Xiao Y M 1996 Czech. J. Phys. 46 2871Google Scholar

    [32]

    Hoang L P, Le D N, Pham D A, Nguyen T K C, Nguyen T m A, Ngo X C, Hoang T D, Nguyen T B and Cao B X 2019 Mater. Lett. 262 127176

    [33]

    Cabrera B, Gutfreund H, Little W A 1982 Phys. Rev. B 25 11

    [34]

    Berry M V 1984 Proc. R. Soc. London, Ser. A. 391 45

    [35]

    P. G. 德热纳 2013 金属与合金的超导电性 (北京: 高等教育出版社) 第107页

    De Gennes P G 2013 Superconductivity of Metals and Alloys (Beijing: Higher Education Press) p107 (in Chinese)

    [36]

    Koizumi H 2021 J. Supercond. Nov. Magn. 34 5

  • [1] Guo Jing, Wu Qi, Sun Li-Ling. Discovery of robust superconductivity against volume shrinkage. Acta Physica Sinica, 2023, 72(23): 237401. doi: 10.7498/aps.72.20231341
    [2] Feng Xi-Lin, Jiang Kun, Hu Jiang-Ping. Kagome superconductors. Acta Physica Sinica, 2022, 71(11): 118103. doi: 10.7498/aps.71.20220891
    [3] Li Miao-Cong, Tao Qian, Xu Zhu-An. The transport properties of iron-based superconductors. Acta Physica Sinica, 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [4] Zhang Yan-Yan, Chen Jia-Lin, Zha Guo-Qiao, Zhou Shi-Ping. Spontaneous magnetic field and odd-frequency pairing state in multiband superconductors. Acta Physica Sinica, 2019, 68(16): 167401. doi: 10.7498/aps.68.20190445
    [5] Liu Min-Xia, He Lin, Zhang Geng, Ye Hai, Huang Xiao-Yuan, Xu Yong-Zhao. Theoretical analysis of the upper critical field of two-band superconductor LaNiC2. Acta Physica Sinica, 2016, 65(3): 037401. doi: 10.7498/aps.65.037401
    [6] Xing Zhong-Wen, Liu Mei, Li Bin. Magnetism and phonon softening of LiFeAs superconductors. Acta Physica Sinica, 2011, 60(7): 077402. doi: 10.7498/aps.60.077402
    [7] Liu Min-Xia. The two-band Ginzburg-Landau theory analysis of the surface critical field of the two-band superconductor Lu2Fe3Si5. Acta Physica Sinica, 2011, 60(1): 017401. doi: 10.7498/aps.60.017401
    [8] Li Xiao-Wei. . Acta Physica Sinica, 2002, 51(8): 1821-1825. doi: 10.7498/aps.51.1821
    [9] Wang Rui-Feng, Zhao Shi-Peng, Xu Feng-Zhi, Chen Gang-Hua, Yang Han-Sheng. . Acta Physica Sinica, 2002, 51(4): 889-893. doi: 10.7498/aps.51.889
    [10] Oyang Shi-Gen, Guan Yi, She Wei-Long. . Acta Physica Sinica, 2002, 51(7): 1596-1599. doi: 10.7498/aps.51.1596
    [11] Wang Yong-Gang, Pang Huan-Gang, Liu Mei. . Acta Physica Sinica, 2000, 49(3): 548-552. doi: 10.7498/aps.49.548
    [12] WANG JIN-XING, YANG SHI-ZHONG, HE YAN-FA, YANG CHAO-WEI, DUAN ZHEN-ZHONG, FENG YONG, ZHANG PING-XIANG, ZHOU LIAN. STUDY ON AC LOSSES OF HIGH Tc SUPERCONDUCTORS IN 50Hz APPLIED MAGNETIC FIELD. Acta Physica Sinica, 1999, 48(1): 148-153. doi: 10.7498/aps.48.148
    [13] CAI XUE-YU, YIN DAO-LE. ON THE PROXIMITY EFFECT OF SUPERCONDUCTING MULTILAYER FILMS. Acta Physica Sinica, 1981, 30(5): 700-704. doi: 10.7498/aps.30.700
    [14] ZHANG YU-HENG, CAO XIAO-WEN. SUPERCONDUCTING CRITICAL FIELDS OF TYPE A AND TYPE B SUPERCONDUCTORS. Acta Physica Sinica, 1980, 29(1): 127-130. doi: 10.7498/aps.29.127
    [15] ZHAO ZHONG-XIAN, LIU FU-SUI, HAN RU-SHAN. THE SHELL MODEL FOR CLAD PARTICLES OF SUPERCONDUCTORS. Acta Physica Sinica, 1979, 28(2): 222-228. doi: 10.7498/aps.28.222
    [16] LIU FU-SUI. THE ENERGY GAP OF TWO TYPES OF SUPERCONDUCTOR. Acta Physica Sinica, 1978, 27(6): 758-760. doi: 10.7498/aps.27.758
    [17] WU HANG-SHENG. SUPERCONDUCTORS OF TYPE A AND TYPE B. Acta Physica Sinica, 1978, 27(6): 756-757. doi: 10.7498/aps.27.756
    [18] . Acta Physica Sinica, 1966, 22(3): 381-384. doi: 10.7498/aps.22.381
    [19] LEI HSIAO-LIN. SUPERCONDUCTING FILMS IN A MAGNETIC FIELD. Acta Physica Sinica, 1965, 21(9): 1619-1637. doi: 10.7498/aps.21.1619
    [20] КРИТИЧЕСКОЕ МАГНИТНОЕ ПОЛЕ СВЕРХПРОВОДНЙКА ВТОРОЙ ГРУППЫ. Acta Physica Sinica, 1965, 21(3): 560-568. doi: 10.7498/aps.21.560
Metrics
  • Abstract views:  3788
  • PDF Downloads:  62
  • Cited By: 0
Publishing process
  • Received Date:  27 October 2021
  • Accepted Date:  08 February 2022
  • Available Online:  19 June 2022
  • Published Online:  05 July 2022

/

返回文章
返回
Baidu
map