-
The squeezed state, as an important quantum resource, has great potential applications in quantum computing, quantum communication and precision measurement. In the noncritically squeezed light theory, the predicted noncritically squeezed light can be generated by breaking the spontaneous rotational symmetry occurring in a degenerate optical parametric oscillator (DOPO) pumped above threshold. The reliability of this kind of squeezing is crucially important, as its quantum performance is robust to the pump power in experiment. However, the detected squeezing degrades rapidly in detection, because the squeezed mode orientation diffuses slowly, resulting in a small mode mismatch during the homodyne detection. In this paper, we propose an experimentally feasible scheme to detect noncritically squeezing reliable by employing the spatial mode swapping technic. Theoretically, the dynamic fluctuation aroused by random mode rotation in the squeezing detection can be compensated for perfectly, and 3 dB squeezing can be achieved robustly even with additional vacuum noise. Our scheme makes an important step forward for the experimental generation of noncritically squeezed light.
[1] 孙恒信, 刘奎, 张俊香, 郜江瑞 2015 64 234210
Google Scholar
Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64 234210
Google Scholar
[2] Grote H, Danzmann K, Dooley K L, Schnabel R, Slutsky J, Vahlbruch H 2013 Phys. Rev. Lett. 110 181101
Google Scholar
[3] Huh J, Guerreschi G G, Peropadre B, McClean J R, Aspuru-Guzik A 2015 Nat. Photonics 9 615
Google Scholar
[4] Arrazola J M, Bromley T R 2018 Phys. Rev. Lett. 121 030503
Google Scholar
[5] Otterstrom N, Pooser R C, Lawrie B J 2014 Opt. Lett 39 6533
Google Scholar
[6] Lamine B, Fabre C, Treps N 2008 Phys. Rev. Lett. 101 123601
Google Scholar
[7] Treps N, Grosse N, Bowen W P, Fabre C, Bachor H A., Lam P K 2003 Science 301 940
Google Scholar
[8] Zuo X, Yan Z, Feng Y, Ma J, Jia X, Xie C, Peng K 2020 Phys. Rev. Lett. 124 173602
Google Scholar
[9] Li S, Pan X, Ren Y, Liu H, Yu S, Jing J 2020 Phys. Rev. Lett. 124 083605
Google Scholar
[10] Pan X, Yu S, Zhou Y, Zhang K, Zhang K, Lv S, Li S, Wang W, Jing J 2019 Phys. Rev. Lett. 123 070506
Google Scholar
[11] Zhang K, Wang W, Liu S, Pan X, Du J, Lou Y, Yu S, Lv S, Treps N, Fabre C, Jing J 2020 Phys. Rev. Lett. 124 090501
Google Scholar
[12] Wu L A, Kimble H J, Hall J L, Wu H 1986 Phys. Rev. Lett. 57 2520
Google Scholar
[13] Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801
Google Scholar
[14] Yang W, Shi S, Wang Y, Ma W, Zheng Y, Peng K 2017 Opt. Lett. 42 4553
Google Scholar
[15] de Valcárcel G J, Patera G, Treps N, Fabre C 2006 Phys. Rev. A 74 061801
Google Scholar
[16] Patera G, Treps N, Fabre C, de Valcárcel G J 2009 Eur. Phys. J. D 56 123
Google Scholar
[17] Chalopin B, Scazza F, Fabre C, Treps N 2010 Phys. Rev. A 81 061804
Google Scholar
[18] Navarrete-Benlloch C, Patera G, de Valcárcel G J 2017 Phys. Rev. A 96 043801
Google Scholar
[19] Optics Q Springer Berlin Heidelberg
[20] Navarrete-Benlloch C, Roldan E, de Valcarcel G J 2008 Phys. Rev. Lett. 100 203601
Google Scholar
[21] Navarrete-Benlloch C, Romanelli A, Roldán E, de Valcárcel G J 2010 Phys. Rev. A 81 043829
Google Scholar
[22] Navarrete-Benlloch C, Roldán E, de Valcárcel G J 2011 Phys. Rev. A 83 043812
Google Scholar
[23] Navarrete-Benlloch C, de Valcárcel G J 2013 Phys. Rev. A 87 065802
Google Scholar
[24] Fabre C, Cohadon P F, Schwob C 2009 Quantum Semiclassical Opt. 9 165
[25] Eckardt R C, Nabors C D, Kozlovsky W J, Byer R L 1991 J. Opt. Soc. Am. B:Opt. Phys. 8 646
Google Scholar
[26] Harris S E 2005 Proc. IEEE 57 2096
Google Scholar
[27] Pinel O, Jian P, Medeiros de Araujo R, Feng J, Chalopin B, Fabre C, Treps N 2012 Phys. Rev. Lett. 108 083601
Google Scholar
[28] Huo N, Zhou C H, Sun H X, Liu K, Gao J R 2016 Chin. Opt. Lett. 14 062702
Google Scholar
[29] Ma L, Guo H, Sun H, Liu K, Su B D, Gao J R 2020 Photonics Res. 8 1422
Google Scholar
-
图 3 LO场相位波动对压缩水平的影响 (a) LO场相位
$0 \to $ $ \pi$ , 分析频率与压缩水平的关系; (b) 不同LO场相位下的压缩水平, 从下往上依次对应LO光相位90°, 85°, 82.5°, 80°Figure 3. (a) The phase of the LO field is from 0 to π, and the relationship between analysis frequency and squeezed level; (b) squeezed levels under different LO field phase, correspond the LO phase 90°, 85°, 82.5°, 80° (from bottom to top) respectively.
图 4 第一个分束器不平衡对测量结果的影响 (a) 分束器反射率
$ 0\to $ $ 1 $ , 分析频率与压缩水平的关系; (b)不同分束器反射率下的压缩水平Figure 4. The relationship between the reflectivity of the first beam splitter and the squeezed level: (a) The reflectivity of the beam splitter ranges from 0 to 1, and the relationship between analysis frequency and squeezed level; (b) squeezed level under different beam splitter reflectivity.
-
[1] 孙恒信, 刘奎, 张俊香, 郜江瑞 2015 64 234210
Google Scholar
Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64 234210
Google Scholar
[2] Grote H, Danzmann K, Dooley K L, Schnabel R, Slutsky J, Vahlbruch H 2013 Phys. Rev. Lett. 110 181101
Google Scholar
[3] Huh J, Guerreschi G G, Peropadre B, McClean J R, Aspuru-Guzik A 2015 Nat. Photonics 9 615
Google Scholar
[4] Arrazola J M, Bromley T R 2018 Phys. Rev. Lett. 121 030503
Google Scholar
[5] Otterstrom N, Pooser R C, Lawrie B J 2014 Opt. Lett 39 6533
Google Scholar
[6] Lamine B, Fabre C, Treps N 2008 Phys. Rev. Lett. 101 123601
Google Scholar
[7] Treps N, Grosse N, Bowen W P, Fabre C, Bachor H A., Lam P K 2003 Science 301 940
Google Scholar
[8] Zuo X, Yan Z, Feng Y, Ma J, Jia X, Xie C, Peng K 2020 Phys. Rev. Lett. 124 173602
Google Scholar
[9] Li S, Pan X, Ren Y, Liu H, Yu S, Jing J 2020 Phys. Rev. Lett. 124 083605
Google Scholar
[10] Pan X, Yu S, Zhou Y, Zhang K, Zhang K, Lv S, Li S, Wang W, Jing J 2019 Phys. Rev. Lett. 123 070506
Google Scholar
[11] Zhang K, Wang W, Liu S, Pan X, Du J, Lou Y, Yu S, Lv S, Treps N, Fabre C, Jing J 2020 Phys. Rev. Lett. 124 090501
Google Scholar
[12] Wu L A, Kimble H J, Hall J L, Wu H 1986 Phys. Rev. Lett. 57 2520
Google Scholar
[13] Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801
Google Scholar
[14] Yang W, Shi S, Wang Y, Ma W, Zheng Y, Peng K 2017 Opt. Lett. 42 4553
Google Scholar
[15] de Valcárcel G J, Patera G, Treps N, Fabre C 2006 Phys. Rev. A 74 061801
Google Scholar
[16] Patera G, Treps N, Fabre C, de Valcárcel G J 2009 Eur. Phys. J. D 56 123
Google Scholar
[17] Chalopin B, Scazza F, Fabre C, Treps N 2010 Phys. Rev. A 81 061804
Google Scholar
[18] Navarrete-Benlloch C, Patera G, de Valcárcel G J 2017 Phys. Rev. A 96 043801
Google Scholar
[19] Optics Q Springer Berlin Heidelberg
[20] Navarrete-Benlloch C, Roldan E, de Valcarcel G J 2008 Phys. Rev. Lett. 100 203601
Google Scholar
[21] Navarrete-Benlloch C, Romanelli A, Roldán E, de Valcárcel G J 2010 Phys. Rev. A 81 043829
Google Scholar
[22] Navarrete-Benlloch C, Roldán E, de Valcárcel G J 2011 Phys. Rev. A 83 043812
Google Scholar
[23] Navarrete-Benlloch C, de Valcárcel G J 2013 Phys. Rev. A 87 065802
Google Scholar
[24] Fabre C, Cohadon P F, Schwob C 2009 Quantum Semiclassical Opt. 9 165
[25] Eckardt R C, Nabors C D, Kozlovsky W J, Byer R L 1991 J. Opt. Soc. Am. B:Opt. Phys. 8 646
Google Scholar
[26] Harris S E 2005 Proc. IEEE 57 2096
Google Scholar
[27] Pinel O, Jian P, Medeiros de Araujo R, Feng J, Chalopin B, Fabre C, Treps N 2012 Phys. Rev. Lett. 108 083601
Google Scholar
[28] Huo N, Zhou C H, Sun H X, Liu K, Gao J R 2016 Chin. Opt. Lett. 14 062702
Google Scholar
[29] Ma L, Guo H, Sun H, Liu K, Su B D, Gao J R 2020 Photonics Res. 8 1422
Google Scholar
Catalog
Metrics
- Abstract views: 4326
- PDF Downloads: 78
- Cited By: 0