-
Magnetostrictive materials have broad application prospects in sensing, control, energy conversion, and information conversion. The improving of the performances and applications of such materials has become a research hotspot, but defects will inevitably appear in the preparation and use of materials. In this study, the magnetostrictive structure model of iron elemental material with no defect or hole defect or crack defect is established by the molecular dynamics method. The influences of different defects on the magnetostrictive behavior of iron thin films are analyzed, and the mechanism of the influence of defects on the magnetostrictive behavior is depicted from the perspective of atomic magnetic moment. The results show that the films with 60 × 2 × 1 defects in the center are the easiest to reach saturation magnetostriction, and the magnetostriction is the least after reaching saturation, with respect to the films without defects. The films with 10 × 10 × 1 and 2 × 60 × 1 defects in the center require a larger magnetic field to approach to saturation, and the magnetostriction of the film with 2 × 60 × 1 defects in the center reaches a maximum value after saturation. This is because the defects will affect the magnetic moment of the surrounding atoms and make them deflect to the direction parallel to the defects, thus affecting the magnetostriction of the iron thin film. Among them, the hole defects have less influence on the magnetostriction, while the crack defects have stronger influence on the magnetostriction. The direction of the crack also has an effect on the magnetostriction of Fe thin film. When the crack is parallel to the direction of magnetization, the maximum magnetostriction of the film in the direction of magnetization from the initial state to the saturation of magnetization will decrease. When the crack is perpendicular to the direction of magnetization, the maximum magnetostriction of the film in the direction of magnetization from the initial state to the saturation of magnetization will increase. These results suggest that the defects affect the magnetostriction of the model as a whole during magnetization by affecting the initial magnetic moment orientation of the surrounding atoms.
-
Keywords:
- elemental iron /
- magnetostriction /
- defects /
- molecular dynamics /
- thin film
[1] Makarova L A, Alekhina Y A, Isaev D A, Khairullin M F, Perov N S 2021 J. Phys. D-Appl. Phys. 54 15003
Google Scholar
[2] Garcia M H, Barrera D, Amat R, Kurlyandskaya G V, Sales S 2016 Measurement 80 201
Google Scholar
[3] Pei H F, Jing J H, Zhang S Q 2020 Measurement 151 107172
Google Scholar
[4] Yu G L, Li Y X, Zeng Y Q, Li J, Zuo L, Li Q, Zhang H W 2013 Chin. Phys. B 22 077504
Google Scholar
[5] 周勇, 李纯健, 潘昱融 2018 67 077702
Google Scholar
Zhou Y, Li C J, Pan Y R 2018 Acta Phys. Sin. 67 077702
Google Scholar
[6] 苏三庆, 刘馨为, 王威, 左付亮, 邓瑞泽, 秦彦龙 2020 工程科学学报 42 1557
Google Scholar
Su S Q, Liu X W, Wang W, Zuo F L, Deng R Z, Qin Y L 2020 Chin. J. Eng. 42 1557
Google Scholar
[7] Ren W P, Xu K, Dixon S, Zhang C 2019 NDT E Int. 101 34
Google Scholar
[8] M'Zali N, Martin F, Aydin U, Belahcen A, Benabou A, Henneron T 2020 J. Magn. Magn. Mater. 500 166299
Google Scholar
[9] 时朋朋, 郝帅 2021 70 034101
Google Scholar
Shi P P, Hao S 2021 Acta Phys. Sin. 70 034101
Google Scholar
[10] Zhao B X, Yao K, Wu L B, Li X L, Wang Y S 2020 Appl. Sci. -Basel 10 7083
Google Scholar
[11] Dubov A A 1997 Met. Sci. Heat Treat. 39 401
Google Scholar
[12] Wang P, Zhang Y, Yao E T, Mi Y, Zheng Y, Tang C L 2021 Measurement 168 108187
Google Scholar
[13] Bao S, Gu Y B, Fu M L, Zhang D, Hu S N 2017 J. Magn. Magn. Mater. 423 191
Google Scholar
[14] Zhang J, Jin W L, Mao J H, Xia J, Fan W J 2020 Constr. Build. Mater. 239 117885
Google Scholar
[15] 宋凯, 任吉林, 任尚坤, 唐继红 2007 无损检测 29 312
Google Scholar
Song K, Ren J L, Ren S K, Tang J H 2007 Nondestruct. Test. 29 312
Google Scholar
[16] 张卫民, 刘红光, 孙海涛 2004 北京理工大学学报 24 571
Google Scholar
Zhang W M, Liu H G, Sun H T 2004 Trans. Beijing Inst. Technol. 24 571
Google Scholar
[17] 李川, 刘敬华, 陈立彪, 蒋成保, 徐惠彬 2011 60 097505
Google Scholar
Li C, Liu J H, Chen L B, Jiang C B, Xu H B 2011 Acta Phys. Sin. 60 097505
Google Scholar
[18] Kharel P, Talebi S, Ramachandran B, Dixit A, Naik V M, Sahana M B, Sudakar C, Naik R, Rao M S R, Lawes G 2009 J. Phys. -Condes. Matter. 21 36001
Google Scholar
[19] 张辉, 曾德长 2010 59 2808
Google Scholar
Zhang H, Zeng D C 2010 Acta Phys. Sin. 59 2808
Google Scholar
[20] Suzuki S, Kawamata T, Simura R, Asano S, Fujieda S, Umetsu R Y, Fujita M, Imafuku M, Kumagai T, Fukuda T 2019 Mater. Trans. 60 2235
Google Scholar
[21] Tranchida J, Plimpton S J, Thibaudeau P, Thompson, A P 2018 J. Comput. Phys. 372 406
Google Scholar
[22] Jeong J, Goremychkin E A, Guidi T, Nakajima K, Jeon G S, Kim S A, Furukawa S, Kim Y B, Lee S, Kiryukhin V, Cheong S W, Park J G 2012 Phys. Rev. Lett. 108 077202
Google Scholar
[23] Kvashnin Y O, Cardias R, Szilva A, Di Marco I, Katsnelson M I, Lichtenstein A I, Nordstrom L, Klautau A B, Eriksson O 2016 Phys. Rev. Lett. 116 217202
Google Scholar
-
-
[1] Makarova L A, Alekhina Y A, Isaev D A, Khairullin M F, Perov N S 2021 J. Phys. D-Appl. Phys. 54 15003
Google Scholar
[2] Garcia M H, Barrera D, Amat R, Kurlyandskaya G V, Sales S 2016 Measurement 80 201
Google Scholar
[3] Pei H F, Jing J H, Zhang S Q 2020 Measurement 151 107172
Google Scholar
[4] Yu G L, Li Y X, Zeng Y Q, Li J, Zuo L, Li Q, Zhang H W 2013 Chin. Phys. B 22 077504
Google Scholar
[5] 周勇, 李纯健, 潘昱融 2018 67 077702
Google Scholar
Zhou Y, Li C J, Pan Y R 2018 Acta Phys. Sin. 67 077702
Google Scholar
[6] 苏三庆, 刘馨为, 王威, 左付亮, 邓瑞泽, 秦彦龙 2020 工程科学学报 42 1557
Google Scholar
Su S Q, Liu X W, Wang W, Zuo F L, Deng R Z, Qin Y L 2020 Chin. J. Eng. 42 1557
Google Scholar
[7] Ren W P, Xu K, Dixon S, Zhang C 2019 NDT E Int. 101 34
Google Scholar
[8] M'Zali N, Martin F, Aydin U, Belahcen A, Benabou A, Henneron T 2020 J. Magn. Magn. Mater. 500 166299
Google Scholar
[9] 时朋朋, 郝帅 2021 70 034101
Google Scholar
Shi P P, Hao S 2021 Acta Phys. Sin. 70 034101
Google Scholar
[10] Zhao B X, Yao K, Wu L B, Li X L, Wang Y S 2020 Appl. Sci. -Basel 10 7083
Google Scholar
[11] Dubov A A 1997 Met. Sci. Heat Treat. 39 401
Google Scholar
[12] Wang P, Zhang Y, Yao E T, Mi Y, Zheng Y, Tang C L 2021 Measurement 168 108187
Google Scholar
[13] Bao S, Gu Y B, Fu M L, Zhang D, Hu S N 2017 J. Magn. Magn. Mater. 423 191
Google Scholar
[14] Zhang J, Jin W L, Mao J H, Xia J, Fan W J 2020 Constr. Build. Mater. 239 117885
Google Scholar
[15] 宋凯, 任吉林, 任尚坤, 唐继红 2007 无损检测 29 312
Google Scholar
Song K, Ren J L, Ren S K, Tang J H 2007 Nondestruct. Test. 29 312
Google Scholar
[16] 张卫民, 刘红光, 孙海涛 2004 北京理工大学学报 24 571
Google Scholar
Zhang W M, Liu H G, Sun H T 2004 Trans. Beijing Inst. Technol. 24 571
Google Scholar
[17] 李川, 刘敬华, 陈立彪, 蒋成保, 徐惠彬 2011 60 097505
Google Scholar
Li C, Liu J H, Chen L B, Jiang C B, Xu H B 2011 Acta Phys. Sin. 60 097505
Google Scholar
[18] Kharel P, Talebi S, Ramachandran B, Dixit A, Naik V M, Sahana M B, Sudakar C, Naik R, Rao M S R, Lawes G 2009 J. Phys. -Condes. Matter. 21 36001
Google Scholar
[19] 张辉, 曾德长 2010 59 2808
Google Scholar
Zhang H, Zeng D C 2010 Acta Phys. Sin. 59 2808
Google Scholar
[20] Suzuki S, Kawamata T, Simura R, Asano S, Fujieda S, Umetsu R Y, Fujita M, Imafuku M, Kumagai T, Fukuda T 2019 Mater. Trans. 60 2235
Google Scholar
[21] Tranchida J, Plimpton S J, Thibaudeau P, Thompson, A P 2018 J. Comput. Phys. 372 406
Google Scholar
[22] Jeong J, Goremychkin E A, Guidi T, Nakajima K, Jeon G S, Kim S A, Furukawa S, Kim Y B, Lee S, Kiryukhin V, Cheong S W, Park J G 2012 Phys. Rev. Lett. 108 077202
Google Scholar
[23] Kvashnin Y O, Cardias R, Szilva A, Di Marco I, Katsnelson M I, Lichtenstein A I, Nordstrom L, Klautau A B, Eriksson O 2016 Phys. Rev. Lett. 116 217202
Google Scholar
Catalog
Metrics
- Abstract views: 5766
- PDF Downloads: 129
- Cited By: 0