Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of back electrode material, structure and thickness on performance of perovskite solar cells

Wang Jian-Tao Xiao Wen-Bo Xia Qing-Gan Wu Hua-Ming Li Fan Huang Le

Citation:

Influence of back electrode material, structure and thickness on performance of perovskite solar cells

Wang Jian-Tao, Xiao Wen-Bo, Xia Qing-Gan, Wu Hua-Ming, Li Fan, Huang Le
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The back electrode is an important factor affecting the performance of perovskite solar cells. In this paper, the effects of back electrode material, structure and thickness on the performance of perovskite solar cells are studied by using COMSOL software. It is found that compared with the work function of the back electrode metal, its resistance has small effect on solar cell performance. Besides the back electrode structures affecting cell performance, there are other factors affecting cell performance. In terms of the back electrodes with honeycomb structure, considering the difficulty in fabricating, the best cost performance occurs when the radius of the circle is approximately equal to the edge spacing. It is predicted that the cell performance will be improved by about 5% in porosity with increasing 10% in the back electrode. The resistance of the back electrode decreases with its thickness increasing. Considering the process and cost, the optimal thickness should be between 100 nm and 150 nm.
      Corresponding author: Xiao Wen-Bo, xiaowenbo1570@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12064027, 62065014, 62064007), the Open Fund of the Key Laboratory of Nondestructive Testing of Ministry of Education, China (Grant Nos. EW201908442, EW201980090), and the Training Plan for Academic and Technical Leaders of Major Disciplines in Jiangxi Province - Leading Talent Project, China (Grant No. 20204BCJ22002)
    [1]

    Jeong M, Choi I W, Go E M, Cho Y, Kim M, Lee B, Jeong S, Jo Y, Choi H W, Lee J, Bae J H, Kwak S K, Kim D S, Yang C 2020 Science 369 1615Google Scholar

    [2]

    Jiang Q, Zhao Y, Zhang X, Yang X, Chen X, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Nat. Photonics 13 460Google Scholar

    [3]

    姬超, 梁春军, 由芳田, 何志群 2021 70 028402Google Scholar

    Ji C, Liang C J, You T F, He Z Q 2021 Acta Phys. Sin. 70 028402Google Scholar

    [4]

    Zhao Y, Wei J, Li, Y Yan, Zhou W, Yu D, Zhao Q 2016 Nat. Commun. 7 10228Google Scholar

    [5]

    Walter D, Wu Y, Duong T, Peng J, Jiang L, Fong K C, Weber K 2018 Adv. Energy Mater. 8 1701522Google Scholar

    [6]

    朱彧, 杜晨, 王硕, 马瑞新, 王成彦 2020 工程科学学报 42 16

    Zhu Y, Du C, Wang S, Ma R X, Wang C Y 2020 Chin. J. Eng. 42 16

    [7]

    彭英才, 傅广生 2014 新概念太阳电池 (北京: 科学出版社) 第38−39页

    Peng Y C, Fu G S 2014 New Concept Solar Cell (Beijing: Science Press) pp38−39 (in Chinese)

    [8]

    Wenham S R, Green M A, Watt M E, Corkish R 2007 Applied Photovoltaics (UK: Stylus Pub Llc) pp64−67

    [9]

    Lin C Y, Wan C C, Wei T C 2011 Electrochim. Acta 56 1941Google Scholar

    [10]

    Fan Z J, Yi F S, Guo S, Bi Y G 2019 Opt. Eng. 58 017103

    [11]

    Zhang H, Song K, Zhu L, Meng Q 2020 Carbon 168 372Google Scholar

    [12]

    Hu Y, Adhyaksa G W P, DeLuca G, Simonov A N, Duffy N W, Reichmanis E, Bach U, Docampo P, Bein T, Garnett E C, Chesman A S R, Jumabekov A N 2019 AIP Adv. 9 125037Google Scholar

    [13]

    Jian W, Xu R P, Li Y Q, Chi L, Chen J D, Zhao X D, Xie Z Z, Lee C S, Zhang W J, Tang J X 2017 Adv. Energy Mater. 7 1700492Google Scholar

    [14]

    Yang W, Yang Z, Shou C, Sheng J, Yan B, Ye J 2020 Sol. Energy 201 84Google Scholar

    [15]

    Behrouznejad F, Tsai C M, Narra S, Diau E, Taghavinia N 2017 ACS Appl. Mater. Interfaces 9 25204Google Scholar

    [16]

    Lin X, Chesman A S R, Raga S R, Scully A D, Jiang L, Tan B, Lu J, Cheng Y B, Bach U 2018 Adv. Funct. Mater. 28 1805098Google Scholar

    [17]

    Jahantigh F, Ghorashi S M B 2019 Nano 14 1950127Google Scholar

    [18]

    Saxena P, Gorji N E 2019 IEEE J. Photovoltaics 9 1693Google Scholar

    [19]

    王媛, 崔艳, 吴以治 2019 人工晶体学报 48 2075Google Scholar

    Wang Y, Cui Y, Wu Y Z 2019 J. Synth. Cryst. 48 2075Google Scholar

    [20]

    车俐佳, 郭艳群, 邹谭圆, 盛鑫, 赖文志, 蔡传兵 2020 功能材料与器件学报 25 43

    Che L J, Guo Y Q, Zou T Y, Sheng X, Lai W Z, Cai C B 2020 J. Funct. Mater. Devices 25 43

    [21]

    甘永进, 莫沛, 杨瑞兆, 饶俊慧, 李清流, 毕雪光 2021 固体电子学研究与进展 41 53

    Gan Y J, Mo P, Yang R Z, Rao J H, Li Q L, Bi X G 2021 Prog. Solid State Electron. 41 53

    [22]

    Hou Q, Dorota B, Jumabekov A N, Wei L, Wang Z, Lin X, Hock N S, Tan B, Bao Q, Chesman A S R, Bing C, Bach U 2018 Nano Energy 50 710Google Scholar

    [23]

    Zhou X, Bao C, Li F M, Gao H, Yu T, Yang J, Zhu W, Zou Z 2015 RSC Adv. 5 58543Google Scholar

    [24]

    Mesquita I, Andrade L, Mendes A 2018 Renewable Sustainable Energy Rev. 82 2471Google Scholar

  • 图 1  文献(a)及本文(b)构建的背电极结构在COMSOL中的网格剖分图; (c)文献与本文计算的背电极电阻-厚度变化趋势图

    Figure 1.  The grid diagram of the back electrode structure constructed in literature (a) and this paper (b) in COMSOL; (c) back electrode resistance changing with its thickness.

    图 2  6种金属的背电极功函数、电池转换效率(a)及其电阻(b)

    Figure 2.  Back electrode work function, cell conversion efficiency (a) and electrode resistance (b) of six metals.

    图 3  S-HQIDE (a、c)和L-HQIDE(b、d)的背电极结构以及仿真图

    Figure 3.  Back electrode structure and simulation diagram of S-HQIDE ((a), (c)) and L-HQIDE ((b), (d)).

    图 4  蜂窝结构背电极电阻随圆形半径的变化

    Figure 4.  The resistance of the back electrode with honeycomb structure varies with the radius of the circle.

    图 5  无孔隙及10%随机孔隙时背电极仿真图及其电阻(a), 以及占比变化对其电阻值影响(b)

    Figure 5.  Simulation diagram of back electrode without and with 10% random pores and its resistance (a), and the influence of proportion change on its resistance (b).

    图 6  仿真蜂窝结构(a)及背电极电阻-厚度变化趋势图(b)

    Figure 6.  Simulated honeycomb structure (a) and back electrode resistance changing with its thickness (b).

    Baidu
  • [1]

    Jeong M, Choi I W, Go E M, Cho Y, Kim M, Lee B, Jeong S, Jo Y, Choi H W, Lee J, Bae J H, Kwak S K, Kim D S, Yang C 2020 Science 369 1615Google Scholar

    [2]

    Jiang Q, Zhao Y, Zhang X, Yang X, Chen X, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Nat. Photonics 13 460Google Scholar

    [3]

    姬超, 梁春军, 由芳田, 何志群 2021 70 028402Google Scholar

    Ji C, Liang C J, You T F, He Z Q 2021 Acta Phys. Sin. 70 028402Google Scholar

    [4]

    Zhao Y, Wei J, Li, Y Yan, Zhou W, Yu D, Zhao Q 2016 Nat. Commun. 7 10228Google Scholar

    [5]

    Walter D, Wu Y, Duong T, Peng J, Jiang L, Fong K C, Weber K 2018 Adv. Energy Mater. 8 1701522Google Scholar

    [6]

    朱彧, 杜晨, 王硕, 马瑞新, 王成彦 2020 工程科学学报 42 16

    Zhu Y, Du C, Wang S, Ma R X, Wang C Y 2020 Chin. J. Eng. 42 16

    [7]

    彭英才, 傅广生 2014 新概念太阳电池 (北京: 科学出版社) 第38−39页

    Peng Y C, Fu G S 2014 New Concept Solar Cell (Beijing: Science Press) pp38−39 (in Chinese)

    [8]

    Wenham S R, Green M A, Watt M E, Corkish R 2007 Applied Photovoltaics (UK: Stylus Pub Llc) pp64−67

    [9]

    Lin C Y, Wan C C, Wei T C 2011 Electrochim. Acta 56 1941Google Scholar

    [10]

    Fan Z J, Yi F S, Guo S, Bi Y G 2019 Opt. Eng. 58 017103

    [11]

    Zhang H, Song K, Zhu L, Meng Q 2020 Carbon 168 372Google Scholar

    [12]

    Hu Y, Adhyaksa G W P, DeLuca G, Simonov A N, Duffy N W, Reichmanis E, Bach U, Docampo P, Bein T, Garnett E C, Chesman A S R, Jumabekov A N 2019 AIP Adv. 9 125037Google Scholar

    [13]

    Jian W, Xu R P, Li Y Q, Chi L, Chen J D, Zhao X D, Xie Z Z, Lee C S, Zhang W J, Tang J X 2017 Adv. Energy Mater. 7 1700492Google Scholar

    [14]

    Yang W, Yang Z, Shou C, Sheng J, Yan B, Ye J 2020 Sol. Energy 201 84Google Scholar

    [15]

    Behrouznejad F, Tsai C M, Narra S, Diau E, Taghavinia N 2017 ACS Appl. Mater. Interfaces 9 25204Google Scholar

    [16]

    Lin X, Chesman A S R, Raga S R, Scully A D, Jiang L, Tan B, Lu J, Cheng Y B, Bach U 2018 Adv. Funct. Mater. 28 1805098Google Scholar

    [17]

    Jahantigh F, Ghorashi S M B 2019 Nano 14 1950127Google Scholar

    [18]

    Saxena P, Gorji N E 2019 IEEE J. Photovoltaics 9 1693Google Scholar

    [19]

    王媛, 崔艳, 吴以治 2019 人工晶体学报 48 2075Google Scholar

    Wang Y, Cui Y, Wu Y Z 2019 J. Synth. Cryst. 48 2075Google Scholar

    [20]

    车俐佳, 郭艳群, 邹谭圆, 盛鑫, 赖文志, 蔡传兵 2020 功能材料与器件学报 25 43

    Che L J, Guo Y Q, Zou T Y, Sheng X, Lai W Z, Cai C B 2020 J. Funct. Mater. Devices 25 43

    [21]

    甘永进, 莫沛, 杨瑞兆, 饶俊慧, 李清流, 毕雪光 2021 固体电子学研究与进展 41 53

    Gan Y J, Mo P, Yang R Z, Rao J H, Li Q L, Bi X G 2021 Prog. Solid State Electron. 41 53

    [22]

    Hou Q, Dorota B, Jumabekov A N, Wei L, Wang Z, Lin X, Hock N S, Tan B, Bao Q, Chesman A S R, Bing C, Bach U 2018 Nano Energy 50 710Google Scholar

    [23]

    Zhou X, Bao C, Li F M, Gao H, Yu T, Yang J, Zhu W, Zou Z 2015 RSC Adv. 5 58543Google Scholar

    [24]

    Mesquita I, Andrade L, Mendes A 2018 Renewable Sustainable Energy Rev. 82 2471Google Scholar

Metrics
  • Abstract views:  10687
  • PDF Downloads:  341
  • Cited By: 0
Publishing process
  • Received Date:  31 May 2021
  • Accepted Date:  09 August 2021
  • Available Online:  30 August 2021
  • Published Online:  05 October 2021

/

返回文章
返回
Baidu
map