Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Oscillatory Turing patterns in two-layered coupled non-symmetric reaction diffusion systems

Liu Ya-Hui Dong Meng-Fei Liu Fu-Cheng Tian Miao Wang Shuo Fan Wei-Li

Citation:

Oscillatory Turing patterns in two-layered coupled non-symmetric reaction diffusion systems

Liu Ya-Hui, Dong Meng-Fei, Liu Fu-Cheng, Tian Miao, Wang Shuo, Fan Wei-Li
PDF
HTML
Get Citation
  • Pattern formation and self-organization are ubiquitous in nature and commonly observed in spatially extended non-equilibrium systems. As is well known, the origin of spatio-temporal patterns can be traced to the instability of the system, and is always accompanied by a symmetry breaking phenomenon. In reality, most of non-equilibrium systems are constructed by interactions among several different units, each of which has its unique symmetry breaking mechanism. The interaction among different units described by coupled pattern forming system gives rise to a variety of self-organized patterns including stationary and/or oscillatory patterns. In this paper, the dynamics of oscillatory Turing patterns in two-layered coupled non-symmetric reaction diffusion systems are numerically investigated by linearly coupling the Brusselator model and the Lengyel-Epstein model. The interaction among the Turing modes, higher-order harmonics and Hopf mode, and their effects on oscillatory Turing pattern are also analyzed. It is shown that the supercritical Turing mode ${k_1}$ in the Lengyel-Epstein model is excited and interacts with the higher-order harmonics $\sqrt 3 {k_1}$ located in the Hopf region in the Brusselator model, and thus giving rise to the synchronous oscillatory hexagon pattern. The harmonic $\sqrt 2 {k_1}$ that can also be excited initially is some parameter domain, but it is unstable and vanishes finally. As the parameter b is increased, this oscillatory hexagon pattern first undergoes period-doubling bifurcation and transits into two-period oscillation, and then into multiple-period oscillation. When the Hopf mode participates in the interaction, the pattern will eventually transit into chaos. The synchronous oscillatory hexagon pattern can only be obtained when the subcritical Turing mode ${k_2}$ in the Brusselator model is weaker than the higher-order harmonics $\sqrt 3 {k_1}$ located in the Hopf region and neither of the two Turing modes satisfies the spatial resonance condition. The system favorites the spatial resonance and selects the super-lattice patterns when these modes interact with each other. The interaction between Hopf mode and Turing mode can only give rise to non-synchronous oscillatory patterns. Moreover, the coupling strength also has an important effect on the oscillatory Turing pattern. These results not only provide a new pattern forming mechanism which can be extended to other nonlinear systems, but also gives an opportunity for more in-depth understanding the nature and their relevance to technological applications.
      Corresponding author: Liu Fu-Cheng, hdlfc@hbu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975089, 11875014) and the Excellent Young Scientists Fund of Hebei Province, China (Grant No. A2017201099)
    [1]

    Marino F, Giacomelli G 2019 Phys. Rev. Lett. 122 174102Google Scholar

    [2]

    Bleicher P, Sciortino A, Bausch A R 2020 Sci. Rep. 10 62151Google Scholar

    [3]

    Fencl M 2020 Nonlinear Anal. Theory Methods Appl. 196 111815Google Scholar

    [4]

    Gao Y P, Zhang Y F, Schwen D, Jiang C, Gan J 2019 Sci. Rep. 9 7835Google Scholar

    [5]

    Dong L F, Mi Y L, Pan Y Y 2020 Phys. Plasmas 27 023504Google Scholar

    [6]

    Yu G L, Dong L F, Guo L T, Liu F C, Li C X, Dou Y Y, Ren C H, Pan Y Y 2020 Phys. Plasmas 27 053503Google Scholar

    [7]

    郑志刚, 翟云 2020 中国科学: 物理学 力学 天文学 50 69Google Scholar

    Zheng Z G, Zhai Y 2020 Sci. China, Ser. G 50 69Google Scholar

    [8]

    Gao J, Gu C G 2019 IEEE Access 7 140391Google Scholar

    [9]

    Gu L C, Gong P L, Wang H Q 2020 Discrete Dyn. Nat. Soc. 2020 5293748

    [10]

    Yang R, Song Y L 2016 Nonlinear Anal. Real World Appl. 31 356Google Scholar

    [11]

    Dolnik M, Rovinsky A B, Zhabotinsky A M, Epstein I R 1999 J. Phys. Chem. A 103 38Google Scholar

    [12]

    Yang L F, Zhabotinsky A M, Epstein I R 2004 Phys. Rev. Lett. 92 198303Google Scholar

    [13]

    Zhabotinsky A M, Dolnik M, Epstein I R 1995 J. Chem. Phys. 103 10306Google Scholar

    [14]

    Konishi K, Hara N 2018 Phys. Rev. E 97 052201Google Scholar

    [15]

    李新政, 白占国, 李燕 2019 68 068201Google Scholar

    Li X Z, Bai Z G, Li Y 2019 Acta Phys. Sin. 68 068201Google Scholar

    [16]

    Paquin-Lefebvre F, Xu B, Dipietro K L, Lindsay A E, Jilkine A 2020 J. Theor. Biol. 497 110242Google Scholar

    [17]

    Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2002 Phys. Rev. Lett. 88 208303Google Scholar

    [18]

    Yang L F, Epstein I R 2003 Phys. Rev. Lett. 90 178303Google Scholar

    [19]

    Anguelov R, Stoltz S M 2017 Math. Comput. Simul. 133 39Google Scholar

    [20]

    Li X Z, Bai Z G, Li Y, Zhao K 2016 Mod. Phys. Lett. B 30 1650085Google Scholar

    [21]

    Pal K, Paul S, Ray D S 2020 Phys. Rev. E 101 052203Google Scholar

    [22]

    Scarabotti P, Govezensky T, Bolcatto P 2020 Sci. Rep. 10 124451

    [23]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U 2006 Phys. Rep. 424 175Google Scholar

    [24]

    Li C X, Dong L F, Feng J Y, Huang Y P 2019 Phys. Plasmas 26 023505Google Scholar

    [25]

    Callegari T, Bernecker B, Boeuf J P 2014 Plasma Sources Sci. Technol. 23 054003Google Scholar

    [26]

    Trelles J P 2016 J. Phys. D: Appl. Phys. 49 393002Google Scholar

    [27]

    陈俊英, 董丽芳, 李媛媛, 宋倩, 嵇亚飞 2012 61 075211Google Scholar

    Chen J Y, Dong L F, Li Y Y, Song Q, Ji Y F 2012 Acta Phys. Sin. 61 075211Google Scholar

    [28]

    Feng J Y, Pan Y Y, Li C X, Liu B B, Dong L F 2020 Phys. Plasmas 27 063516Google Scholar

    [29]

    Dong L F, Li B, Shen Z K, Liu L 2012 Phys. Rev. E 86 056217Google Scholar

    [30]

    Dong L F, Shen Z K, Li B, Bai Z G 2013 Phys. Rev. E 87 042914Google Scholar

    [31]

    刘富成, 刘雅慧, 周志向, 郭雪, 董梦菲 2020 69 028201Google Scholar

    Liu F C, Liu Y H, Zhou Z X, Guo X, Dong M F 2020 Acta Phys. Sin. 69 028201Google Scholar

    [32]

    Gambino G, Lombardo M C, Sammartino M, Sciacca V 2013 Phys. Rev. E 88 042925Google Scholar

    [33]

    Li J, Wang H L, Ouyang Q 2014 Chaos 24 023115Google Scholar

    [34]

    冯建宇, 董丽芳, 魏领燕 2016 发光学报 37 1076Google Scholar

    Feng J Y, Dong L F, Wei L Y 2016 Chin. J. Chromatogr. 37 1076Google Scholar

    [35]

    Dong L F, Liu W L, Wang H F, He Y F, Fan W L, Gao R L 2007 Phys. Rev. E 76 046210Google Scholar

    [36]

    Dai D, Zhao X F, Wang Q M 2014 EPL 107 15002Google Scholar

    [37]

    王敩青, 戴栋, 郝艳捧, 李立浧 2012 61 230504Google Scholar

    Wang X Q, Dai D, Hao Y P, Li L C 2012 Acta Phys. Sin. 61 230504Google Scholar

    [38]

    Zhang J, Wang Y H, Wang D Z, Zhuang J 2014 Plasma Sci. Technol. 16 110Google Scholar

    [39]

    Dong L F, Li B, Lu N, Li X C, Shen Z K 2012 Phys. Plasmas 19 052304Google Scholar

  • 图 1  双层线性耦合系统以及单层系统的色散关系 (a) 双层线性耦合系统; (b) 单层Brusselator模型; (c) 单层Lengyel-Epstein模型. 参数取值为: $( a, b) = (3, 9)$, $(c, d) = $$ (15, \;9)$, ${D_{{u_1}}} = 2.2$, ${D_{{v_1}}} = 4.0$, ${D_{{u_2}}} =21.9$, ${D_{{v_2}}} = $$ 400,$ $\alpha = 0.15$

    Figure 1.  Dispersion relationship of two-layered linear coupling system and single layer system: (a) Two-layered linear coupling system; (b) single layer Brusselator model; (c) single layer Lengyel-Epstein model. Parameter: $(a, b) = (3, 9)$, $ \left( {c, d} \right) = \left( {15, 9} \right)$, ${D_{{u_1}}} = 2.2$, ${D_{{v_1}}} = 4.0$, ${D_{{u_2}}} = 21.9$, ${D_{{v_2}}} = $$ 400$, $\alpha = 0.15$

    图 2  同步振荡六边形斑图(参数与图1相同) (a) 振幅分布; (b) A${u_1}$的时间变化关系图; (c) 半个振荡周期内的斑图演化过程

    Figure 2.  Synchronous oscillatory hexagon pattern: (a) Amplitude distribution; (b) time variation of ${u_1}$ at position A; (c) evolution of pattern in half an oscillating period. Parameters are the same as those in Fig. 1.

    图 3  参数 b对时空斑图的影响 (a) 不同参数b下的色散关系曲线; (b1)静态蜂窝状六边形斑图, $b = 8.5$; (b2)单倍周期同步振荡六边形斑图, $ b =9$; (b3) 2倍周期非同步振荡六边形斑图, $ b =9.25$; (b4) 5倍周期非同步振荡六边形斑图, $ b =9.33$; (b5) 3倍周期非同步振荡斑图, $ b =9.5$; (b6)时空混沌, $ b =10$

    Figure 3.  Influence of parameter bon spatio-temporal patterns: (a) Dispersion curves under different parameters b; (b1) static honeycomb hexagon pattern at $b = 8.5$; (b2) single-period synchronous oscillation hexagon pattern at $b = 9$; (b3) non-synchronous oscillation hexagon pattern of 2 times the period at $b = 9.25$; (b4) non-synchronous oscillation hexagon pattern of 5 times the period at $b = 9.33$; (b5) non-synchronous oscillation pattern of 3 times the period at $b = 9.5$; (b6) spatio-temporal chaos at $b = 10$.

    图 4  非共振时不同本征值${h_2}$下的时空斑图 (a) 不同本征值${h_2}$下的色散关系曲线; (b1) 静态蜂窝状六边形斑图, ${h_2} = - 5.50$, ${D_{{u_1}}} = 5.25$, ${D_{{v_1}}} = 6.5$; (b2) 同步振荡六边形斑图, ${h_2} = - 3.44$, ${D_{u{}_1}} = 3.62$, ${D_{{v_1}}} = 5$; (b3) 超六边形斑图, ${h_2} = - 0.56$, ${D_{{u_1}}} = 2.2$, ${D_{{v_1}}} = 4.6$; (b4) 叠加斑图, ${h_2} = - 0.21$, ${D_{{u_1}}} = 2.1$, ${D_{v{}_1}} = 4.8$; (b5)混合斑图, ${h_2} = 0.26$, ${D_{{u_1}}} = 2.03$, ${D_{{v_1}}} = $$ 5.3$; (b6) 条纹斑图, ${h_2} = 0.62$, ${D_{{u_1}}} = 1.98$, ${D_{{v_1}}} = 5.8$

    Figure 4.  Complex patterns under different eigenvalues ${h_2}$ at non-resonance: (a) Dispersion curves under different eigenvalues ${h_2}$; (b1) static honeycomb hexagon pattern, ${h_2} = - 5.50$, ${D_{{u_1}}} = 5.25$, ${D_{{v_1}}} = 6.5$; (b2) synchronous oscillation hexagon pattern, ${h_2} = - 3.44$, ${D_{{u_1}}} = 3.62$, ${D_{{v_1}}} = 5$; (b3) super-hexagon pattern, ${h_2} = - 0.56$, ${D_{{u_1}}} = 2.2$, ${D_{{v_1}}} = 4.6$; (b4) superposition pattern, ${h_2} = - 0.21$, ${D_{{u_1}}} = 2.1$, ${D_{{v_1}}} = 4.8$; (b5) hybrid pattern, ${h_2} = 0.26$, ${D_{{u_1}}} = 2.03$, ${D_{{v_1}}} = 5.3$; (b6) stripe pattern, ${h_2} = 0.62$, ${D_{{u_1}}} = 1.98$, ${D_{{v_1}}} = 5.8$.

    图 5  共振时不同本征值${h_2}$下的时空斑图 (a) 不同本征值${h_2}$下的色散关系曲线; (b1)静态蜂窝状六边形斑图, ${h_2} = - 1.7$, ${D_{{u_1}}} \!=\! 14.55$, ${D_{{v_1}}} \!=\! 24$; (b2) 静态黑眼斑图, ${h_2} \!=\! - 1.1$, ${D_{{u_1}}} \!=\! 13.6$, ${D_{{v_1}}} \!=\! 25$; (b3) 条纹斑图, ${h_2} \!=\! 1.0$, ${D_{{u_1}}} \!=\! 12$, ${D_{{v_1}}} \!=\! 40$

    Figure 5.  Spatiotemporal patterns under different eigenvalues ${h_2}$ at resonance: (a) Dispersion curves under different eigenvalues ${h_2}$; (b1) static honeycomb hexagon pattern, ${h_2} = - 1.7$, ${D_{{u_1}}} = 14.55$, ${D_{{v_1}}} = 24$; (b2) static black eye pattern, ${h_2} = - 1.1$, ${D_{{u_1}}} = 13.6$, ${D_{{v_1}}} = 25$; (b3) stripe pattern, ${h_2} = 1.0$, ${D_{{u_1}}} = 12$, ${D_{{v_1}}} = 40$.

    图 6  不同耦合强度下的时空斑图(其他参数同图1) (a) 不同耦合强度下的色散关系曲线图; (b1)静态蜂窝状六边形斑图, $\alpha = 0.1$; (b2)同步振荡六边形斑图, $\alpha = 0.17$; (b3)非同步振荡六边形斑图, $\alpha = 0.3$; (b4)均匀态, $\alpha = 0.6$

    Figure 6.  Spatio-temporal patterns under different coupling intensities at non-resonance: (a) Dispersion relationship curve diagram under different coupling intensities; (b1) static honeycomb hexagon pattern at $\alpha = 0.1$; (b2) synchronous oscillation hexagon pattern at $\alpha = 0.17$; (b3) non-synchronous oscillation hexagon pattern at $\alpha = 0.3$; (b4) uniform state at $\alpha = 0.6$. Other parameters are the same as those in Fig. 1.

    图 7  振荡黑眼斑图($\left( {a, b} \right) = \left( {3, 10.5} \right)$, $\left( {c, d} \right) = \left( {15, 9} \right)$, ${D_{{u_1}}} = 15$, ${D_{{v_1}}} = 23$, ${D_{{u_2}}} = 21.9$, ${D_{{v_2}}} = 400$, $\alpha = 0.45$) (a) 耦合系统的色散关系曲线; (b) 振幅分布; (c) 3个位置处${u_1}$的时间变化关系图; (d) 斑图演化过程

    Figure 7.  Oscillatory black-eye pattern ($\left( {a, b} \right) = \left( {3, 10.5} \right)$, $\left( {c, d} \right) = \left( {15, 9} \right)$, ${D_{u1}} = 15$, ${D_{v1}} = 23$, ${D_{u2}} = 21.9$, ${D_{v2}} = 400$, $\alpha = 0.45$): (a) Dispersion curve of coupled system; (b) amplitude distribution; (c) time variation of ${u_1}$ at three positions; (d) evolution of pattern.

    Baidu
  • [1]

    Marino F, Giacomelli G 2019 Phys. Rev. Lett. 122 174102Google Scholar

    [2]

    Bleicher P, Sciortino A, Bausch A R 2020 Sci. Rep. 10 62151Google Scholar

    [3]

    Fencl M 2020 Nonlinear Anal. Theory Methods Appl. 196 111815Google Scholar

    [4]

    Gao Y P, Zhang Y F, Schwen D, Jiang C, Gan J 2019 Sci. Rep. 9 7835Google Scholar

    [5]

    Dong L F, Mi Y L, Pan Y Y 2020 Phys. Plasmas 27 023504Google Scholar

    [6]

    Yu G L, Dong L F, Guo L T, Liu F C, Li C X, Dou Y Y, Ren C H, Pan Y Y 2020 Phys. Plasmas 27 053503Google Scholar

    [7]

    郑志刚, 翟云 2020 中国科学: 物理学 力学 天文学 50 69Google Scholar

    Zheng Z G, Zhai Y 2020 Sci. China, Ser. G 50 69Google Scholar

    [8]

    Gao J, Gu C G 2019 IEEE Access 7 140391Google Scholar

    [9]

    Gu L C, Gong P L, Wang H Q 2020 Discrete Dyn. Nat. Soc. 2020 5293748

    [10]

    Yang R, Song Y L 2016 Nonlinear Anal. Real World Appl. 31 356Google Scholar

    [11]

    Dolnik M, Rovinsky A B, Zhabotinsky A M, Epstein I R 1999 J. Phys. Chem. A 103 38Google Scholar

    [12]

    Yang L F, Zhabotinsky A M, Epstein I R 2004 Phys. Rev. Lett. 92 198303Google Scholar

    [13]

    Zhabotinsky A M, Dolnik M, Epstein I R 1995 J. Chem. Phys. 103 10306Google Scholar

    [14]

    Konishi K, Hara N 2018 Phys. Rev. E 97 052201Google Scholar

    [15]

    李新政, 白占国, 李燕 2019 68 068201Google Scholar

    Li X Z, Bai Z G, Li Y 2019 Acta Phys. Sin. 68 068201Google Scholar

    [16]

    Paquin-Lefebvre F, Xu B, Dipietro K L, Lindsay A E, Jilkine A 2020 J. Theor. Biol. 497 110242Google Scholar

    [17]

    Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2002 Phys. Rev. Lett. 88 208303Google Scholar

    [18]

    Yang L F, Epstein I R 2003 Phys. Rev. Lett. 90 178303Google Scholar

    [19]

    Anguelov R, Stoltz S M 2017 Math. Comput. Simul. 133 39Google Scholar

    [20]

    Li X Z, Bai Z G, Li Y, Zhao K 2016 Mod. Phys. Lett. B 30 1650085Google Scholar

    [21]

    Pal K, Paul S, Ray D S 2020 Phys. Rev. E 101 052203Google Scholar

    [22]

    Scarabotti P, Govezensky T, Bolcatto P 2020 Sci. Rep. 10 124451

    [23]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U 2006 Phys. Rep. 424 175Google Scholar

    [24]

    Li C X, Dong L F, Feng J Y, Huang Y P 2019 Phys. Plasmas 26 023505Google Scholar

    [25]

    Callegari T, Bernecker B, Boeuf J P 2014 Plasma Sources Sci. Technol. 23 054003Google Scholar

    [26]

    Trelles J P 2016 J. Phys. D: Appl. Phys. 49 393002Google Scholar

    [27]

    陈俊英, 董丽芳, 李媛媛, 宋倩, 嵇亚飞 2012 61 075211Google Scholar

    Chen J Y, Dong L F, Li Y Y, Song Q, Ji Y F 2012 Acta Phys. Sin. 61 075211Google Scholar

    [28]

    Feng J Y, Pan Y Y, Li C X, Liu B B, Dong L F 2020 Phys. Plasmas 27 063516Google Scholar

    [29]

    Dong L F, Li B, Shen Z K, Liu L 2012 Phys. Rev. E 86 056217Google Scholar

    [30]

    Dong L F, Shen Z K, Li B, Bai Z G 2013 Phys. Rev. E 87 042914Google Scholar

    [31]

    刘富成, 刘雅慧, 周志向, 郭雪, 董梦菲 2020 69 028201Google Scholar

    Liu F C, Liu Y H, Zhou Z X, Guo X, Dong M F 2020 Acta Phys. Sin. 69 028201Google Scholar

    [32]

    Gambino G, Lombardo M C, Sammartino M, Sciacca V 2013 Phys. Rev. E 88 042925Google Scholar

    [33]

    Li J, Wang H L, Ouyang Q 2014 Chaos 24 023115Google Scholar

    [34]

    冯建宇, 董丽芳, 魏领燕 2016 发光学报 37 1076Google Scholar

    Feng J Y, Dong L F, Wei L Y 2016 Chin. J. Chromatogr. 37 1076Google Scholar

    [35]

    Dong L F, Liu W L, Wang H F, He Y F, Fan W L, Gao R L 2007 Phys. Rev. E 76 046210Google Scholar

    [36]

    Dai D, Zhao X F, Wang Q M 2014 EPL 107 15002Google Scholar

    [37]

    王敩青, 戴栋, 郝艳捧, 李立浧 2012 61 230504Google Scholar

    Wang X Q, Dai D, Hao Y P, Li L C 2012 Acta Phys. Sin. 61 230504Google Scholar

    [38]

    Zhang J, Wang Y H, Wang D Z, Zhuang J 2014 Plasma Sci. Technol. 16 110Google Scholar

    [39]

    Dong L F, Li B, Lu N, Li X C, Shen Z K 2012 Phys. Plasmas 19 052304Google Scholar

  • [1] Zhou Wang-Zhe, Li Xue-Peng, Yang Jing, Yang Tian-Li, Wang Xiao-Jun, Liu Bing-Jie, Wang Hao-Zhu, Yang Jun-Bo, Peng Qin-Jun. Generation of one-dimensional high-order Hermite-Gaussian laser beams with large mode volume. Acta Physica Sinica, 2023, 72(1): 014204. doi: 10.7498/aps.72.20221422
    [2] Meng Xing-Rou, Liu Ruo-Qi, He Ya-Feng, Deng Teng-Kun, Liu Fu-Cheng. Cross-diffusion-induced transitions between Turing patterns in reaction-diffusion systems. Acta Physica Sinica, 2023, 72(19): 198201. doi: 10.7498/aps.72.20230333
    [3] Zhou Wang-Zhe,  Li Xue-Peng,  Yang Jing,  Yang Tian-Li,  Wang Xiao-Jun,  Liu Bing-Jie,  Wang Hao-Zhu,  Yang Jun-Bo,  Peng Qin-Jun. Generation of One-dimensional High-order Hermite-Gaussian Laser Beams with Large Mode Volume. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221422
    [4] Liu Jun-Jie, Sheng Quan, Wang Meng, Zhang Jun-Xiang, Geng Xing-Ning, Shi Zheng, Wang Ai-Hua, Shi Wei, Yao Jian-Quan. High-order Laguerre-Gaussian mode laser generated based on spherical aberration cavity. Acta Physica Sinica, 2022, 71(1): 014204. doi: 10.7498/aps.71.20211514
    [5] Liu Ruo-Qi, Jia Meng-Meng, Fan Wei-Li, He Ya-Feng, Liu Fu-Cheng. Effects of anisotropic diffusion on Turing patterns in heterogeneous environment. Acta Physica Sinica, 2022, 71(24): 248201. doi: 10.7498/aps.71.20221294
    [6] Liu Qian, Tian Miao, Fan Wei-Li, Jia Meng-Meng, Ma Feng-Na, Liu Fu-Cheng. Effects of spatial periodic forcing on Turing patterns in two-layer coupled reaction diffusion system. Acta Physica Sinica, 2022, 71(9): 098201. doi: 10.7498/aps.71.20212148
    [7] Liu Fu-Cheng, Liu Ya-Hui, Zhou Zhi-Xiang, Guo Xue, Dong Meng-Fei. Super-lattice patterns in two-layered coupled non-symmetric reaction diffusion systems. Acta Physica Sinica, 2020, 69(2): 028201. doi: 10.7498/aps.69.20191353
    [8] Li Xin-Zheng, Bai Zhan-Guo, Li Yan. Numerical investigation on square Turing patterns in medium with two coupled layers. Acta Physica Sinica, 2019, 68(6): 068201. doi: 10.7498/aps.68.20182167
    [9] Zhang Rong-Pei, Wang Zhen, Wang Yu, Han Zi-Jian. Application of reaction diffusion model in Turing pattern and numerical simulation. Acta Physica Sinica, 2018, 67(5): 050503. doi: 10.7498/aps.67.20171791
    [10] Jiang Tao, Lu Wei-Gang, Ren Jin-Lian, Xu Lei, Lu Lin-Guang. Simulation of polymer filling process by an improved smoothed particle hydrodynamics method based on higher-order Taylor expansion. Acta Physica Sinica, 2016, 65(22): 220202. doi: 10.7498/aps.65.220202
    [11] Zhao Zhan-Shan, Zhang Jing, Ding Gang, Zhang Da-Kun. Chaos synchronization of coronary artery system based on higher order sliding mode adaptive control. Acta Physica Sinica, 2015, 64(21): 210508. doi: 10.7498/aps.64.210508
    [12] Bai Zhan-Guo, Liu Fu-Cheng, Dong Li-Fang. Numerical simulations of hexagonal grid state patterns. Acta Physica Sinica, 2015, 64(21): 210505. doi: 10.7498/aps.64.210505
    [13] Hu Wen-Yong, Shao Yuan-Zhi. Anomalous diffusion in the formation of Turing pattern for the chlorine-iodine-malonic-acid system with a local concentration depended diffusivity. Acta Physica Sinica, 2014, 63(23): 238202. doi: 10.7498/aps.63.238202
    [14] Ni Jun-Kang, Liu Chong-Xin, Pang Xia. Fuzzy fast terminal sliding mode controller using an equivalent control for chaotic oscillation in power system. Acta Physica Sinica, 2013, 62(19): 190507. doi: 10.7498/aps.62.190507
    [15] Pei Li, Zhao Rui-Feng. Analysis of unified unsymmetric lateral coupled-mode theory of optical waveguide. Acta Physica Sinica, 2013, 62(18): 184213. doi: 10.7498/aps.62.184213
    [16] Liu Wei-Hao, Zhang Ya-Xin, Zhou Jun, Gong Sen, Liu Sheng-Gang. Radiation from the unsymmetrical modes of the periodical waveguide structure excited by eccentric electron beam. Acta Physica Sinica, 2012, 61(23): 234209. doi: 10.7498/aps.61.234209
    [17] Qin Fen, Wang Dong, Chen Dai-Bing, Wen Jie. Investigation of L-band higher order depressed magnetically insulated transmission line oscillator. Acta Physica Sinica, 2012, 61(9): 094101. doi: 10.7498/aps.61.094101
    [18] Liu Dong-Feng, Chen Guo-Fu, Bai Jin-Tao, Wang Xian-Hua. . Acta Physica Sinica, 2000, 49(2): 241-246. doi: 10.7498/aps.49.241
    [19] ZHANG BIN, LV BAI-DA. MODE CORRELATION AND COHERENT-MODE REPRESEN-TATION OF MULTI-MODE LASER BEAMS. Acta Physica Sinica, 1999, 48(1): 58-64. doi: 10.7498/aps.48.58
    [20] HE YI-PING, CHEN DE-MING, LIU YONG-GUI, LI CHUAN-LU. KINETIC COUPLING MODE THEORY OF THE FLAT TYPE OF CFEL LOADING DIELECTRIC WITH WIGGLER. Acta Physica Sinica, 1993, 42(6): 935-939. doi: 10.7498/aps.42.935
Metrics
  • Abstract views:  4966
  • PDF Downloads:  112
  • Cited By: 0
Publishing process
  • Received Date:  15 October 2020
  • Accepted Date:  22 February 2021
  • Available Online:  07 June 2021
  • Published Online:  05 August 2021

/

返回文章
返回
Baidu
map