Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Clock synchronization error compensation algorithm based on BP neural network model

Wei Lian-Suo Li Hua Wu Di Guo Yuan

Citation:

Clock synchronization error compensation algorithm based on BP neural network model

Wei Lian-Suo, Li Hua, Wu Di, Guo Yuan
PDF
HTML
Get Citation
  • Error compensation is an important guarantee method to ensure the accuracy of clock synchronization in underwater sensor networks. Existing research methods mainly use linear fitting and least square method to compensate for clock synchronization parameters. Underwater wireless sensor network nodes are mobile, which leads the network nodes to be always in a time-varying state. In the process of synchronous forwarding, the position where the node sends and receives data packets will change, resulting in a relative moving distance, leading the dynamic delay to an increase in. In this way, as the number of forwarding nodes increases, the error of the clock gradually increases, causing the synchronization accuracy of the underwater sensor wireless network to gradually decrease. The existing underwater wireless sensor network clock synchronization algorithm does not fully consider the dynamic time delay caused by the movement of the node with the ocean current. It only uses the time stamp mechanism to solve the clock synchronization parameters, and then uses the traditional linear fitting to refine the synchronization parameters. The accurate solution of dynamic time delay is a key factor of synchronization accuracy. The use of traditional optimization algorithms to refine the synchronization parameters can easily fall into a local optimum, which makes the synchronization accuracy not high. Therefore, the existing traditional research on clock synchronization algorithms cannot well solve the problem of clock synchronization accuracy caused by node mobility. However this type of method does not consider the clock synchronization accuracy of node movement affected by ocean currents. To solve this problem, this paper proposes a clock synchronization error compensation algorithm based on BP neural network model. First, the deep-sea Lagrangian ocean current model is used to describe the movement of underwater nodes and simulate the movement speed of underwater nodes, and then a clock synchronization parameter model is established, and finally a BP neural network clock synchronization error compensation model is build, which conforms to the underwater environment, and the excitation function is defined, and regular term factor and compensatory factor are introduced to avoid model over-fitting. The BP neural network model clock synchronization error compensation algorithm is established for error back propagation. Simulation experiments show that compared with the comparison algorithm TSHL, MM-sync, and MU-sync, the accuracy of clock synchronization, namely the error between clock synchronization time and standard time, increased by 37.42%, 17.29% and 21.86%, and the mean square error is significantly reduced.
      Corresponding author: Li Hua, 1769348608@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61872204), the Natural Science Foundation of Heilongjiang Province, China (Grant No. LH2019F037), the Special (General) Project of Heilongjiang Provincial Department of Education, China (Grant No. 135409312), and the Postgraduate Innovation Research Project, China (Grant Nos. YJSCX2020009, YJSCX2019072)
    [1]

    MacKenzie A B, DaSilva L A 2019 Sensors 57 36Google Scholar

    [2]

    Hao X C, Zhang Y X, Jia N, Liu B 2018 Wirel. Pers. Commun. 69 1289Google Scholar

    [3]

    Li N, Hou J C, Sha L 2019 Wirel. Commun. 4 1195Google Scholar

    [4]

    彭海霞, 赵海, 李大舟, 林川 2014 63 090206Google Scholar

    Peng H X, Zhao H, Li D Z, Lin C 2014 Acta Phys. Sin. 63 090206Google Scholar

    [5]

    孙大洋, 钱志鸿, 韩梦飞, 王雪 2014 电子学报 42 1601Google Scholar

    Sun D Y, Qian Z H, Han M F, Wang X 2014 Acta Electron. Sin. 42 1601Google Scholar

    [6]

    Zhang C, Fei S M, Zhou X P 2018 Chin. Phys. B 21 120101Google Scholar

    [7]

    A. A. Syed and J. Heidemann 2006 25th IEEE International Conference on Computer Communications Barcelona, Spain April 23–29, 2006 p161

    [8]

    王慧强, 温秀秀, 林俊宇, 冯光升 2016 通信学报 17 620Google Scholar

    Wang H Q, Weng X X, Lin J Y, Feng G S 2016 Journal of Communications. 17 620Google Scholar

    [9]

    Chirdchoo, N, W. S. Soh, K. C. Chua 2008 Proceedings of the Third Workshop on Underwater Networks (WUWNET), San Francisco, California, USA, September 15, 2008 p201

    [10]

    Yaghoubi F, Abbasfar A A, Maham B 2019 IEEE Commun. Lett. 18 973Google Scholar

    [11]

    Wang X, Sheng M, Liu M, Zhai D, Zhang Y 2018 Wireless Communications and Networking Conference (WCNC) Shanghai, China, April 7–10, 2018 p1009

    [12]

    Sajjad Z, Nasser Y, Amir N 2018 Comput. Netw. 56 902Google Scholar

    [13]

    Zou Y L, Zhu J, Zheng B Y, Tang S L 2010 IEEE Global Telecommunications Conference (GLOBECOM 2010) Miami Florida, USA, December 6–10, 2010 p1

    [14]

    Komali R S, MacKenzie A B 2016 Proceedings of IEEE CCNC Las Vegas Conference Arizona, USA, January 8–10, 2016 p563

    [15]

    Kim S, Yoo Y 2019 INT J DISTRIB SENS N. 8 18Google Scholar

    [16]

    Yu K, Guo Y J, Hedley M 2018 IET Signal Proc. 3 106Google Scholar

    [17]

    Laska J, Bradley W, Rondeau T 2011 IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks Aachen, Germany, May 3–6, 2011 p156

    [18]

    Shi M Z, Wang N Z, Lei B, Ying J J, Zhu C S, Sun Z L, Cui J H, Meng F B, Shang C, Ma L K, Chen X H 2018 New J. Phys. 20 123007Google Scholar

    [19]

    Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S, Fujihisa H, Gotoh Y, Kihou K, Eisaki H, Yoshida Y 2016 J. Am. Chem. Soc. 138 3410Google Scholar

    [20]

    Blomberg E, Tanatar M, Fernandes R, Mazin I, Shen B, WenH H, Johannes M, Schmalian J, Prozorov R 2017 Nat. Commun. 4 1914

    [21]

    Fang L, Luo H Q, Cheng P, Wang Z S, Jia Y, Mu G, Shen B, Mazin I I, Shan L, Ren C, Wen H H 2018 Phys. Rev. B 80 140508

    [22]

    Shimojima T, Sakaguchi F, Ishizaka K, Ishida Y, Kiss T, Okawa M, Togashi T, Chen C T, Watanabe S, Arita M, Shimada K, Namatame H, Taniguchi M, Ohgushi K, Kasahara S, Terashima T, Shibauchi T, Matsuda Y, Chainani A, Shin S 2016 Science 332 564

    [23]

    Ho K C, Lu X, Kovavisaruch L 2017 IEEE Trans. 55 684Google Scholar

    [24]

    Wang C, Li Y, Zhu Z, Jiang S, Lin X, Luo Y, Chi S, Li L, Ren Z, He M, Chen H, Wang Y T, Tao Q, Cao G H, Xu Z A 2017 Phys. Rev. B 79 054521Google Scholar

    [25]

    Newman M E J, Strogatz S H, Watts D J 2011 Phys. Rev. 64 026118Google Scholar

    [26]

    Analytis J G, Kuo H, McDonald R D, Wartenbe M, Hussey N, Fisher I 2016 Nat. Phys. 10 194Google Scholar

    [27]

    Kleinrock L, Silvester J 2008 Proceedings of the National Telecommunications Conference Birmingham Ala, USA, March 27, 2008 p10

    [28]

    Hayes I M, McDonald R D, Breznay N P, Helm T, Moll P J, Wartenbe M, Shekhter A, Analytis J G 2016 Nat. Phys. 12 916Google Scholar

  • 图 1  x方向的速率

    Figure 1.  The velocity in the x direction.

    图 2  y方向的速率

    Figure 2.  The velocity in the y direction.

    图 3  数据报文交换过程

    Figure 3.  Data message exchange process.

    图 4  数据报文交换过程

    Figure 4.  Data message exchange process

    图 5  BP神经网络时钟同步误差补偿结构图

    Figure 5.  BP neural network clock synchronization error structure diagram.

    图 6  误差对比分析

    Figure 6.  Error comparison and analysis.

    图 7  BP神经网络预测

    Figure 7.  BP neural network prediction.

    图 8  线性拟合预测

    Figure 8.  Linear fitting prediction.

    图 9  时钟频偏计算偏差随节点移动的变化

    Figure 9.  The variation of clock-frequency offset calculation deviation with node move.

    图 10  时钟漂移计算偏差随节点移动变化情况

    Figure 10.  The clock drift calculation deviation changes with the node movement.

    图 11  时钟同步后本地时钟误差增长趋势变化

    Figure 11.  The increasing trend of local clock error changes after clock synchronization.

    图 12  同步次数与数据报文的变化

    Figure 12.  Changes in synchronization times and datagram.

    表 1  模型搭建阶段

    Table 1.  Model construction phase.

    算法: 基于BP神经网络模型时钟同步误差补偿算法
    输入: $\begin{array}{l} {{a}} = [{a_1}, {a_2}, {a_3}, \cdots, {a_i}, \cdots, {a_m}], i = 1, 2, \cdots m \\ {{b}} = [{b_1}, {b_2}, {b_3}, \cdots, {b_i}, \cdots, {b_m}], i = 1, 2, \cdots m \\ {{t}} = [{t_1}, {t_2}, {t_3}, \cdots, {t_i}, \cdots, {t_m}], i = 1, 2, \cdots m \end{array} $
    阶段1: BP模型搭建阶段
    01: 算法
    02:  算法阶段一开始
    03:  数据收集
    04:   $\begin{array}{l}m\leftarrow \big\{ {{a} }=[{a}_{1}, {a}_{2}, {a}_{3}, \cdots, {a}_{i}, \cdots, {a}_{m}], \;\\{{b} }=[{b}_{1}, {b}_{2}, {b}_{3}, \cdots, {b}_{i}, \cdots, {b}_{m}], \\{{t} }=[{t}_{1}, {t}_{2}, {t}_{3}, \cdots, {t}_{i}, \cdots, {t}_{m}]\big\}\end{array}$
    05:    数据归一化
    06:     $\tilde m \leftarrow m$
    07:    for $c = {\rm{ 1}}$, $c \leqslant 10, {\rm{c}} + + $
    08:    根据$l \!=\! \sqrt{q \!+\! s} \!+\! c$计算隐藏层的神经元的个数
    09:    BP神经网络模型
    10:  end for
    11: end
    DownLoad: CSV

    表 2  模型训练阶段

    Table 2.  Model training stage.

    阶段2: BP网络模型训练阶段
    01:  算法开始
    02:   开始训练网络
    03:   参数初始化
    04:   随机设置$w \in (0, 1), b \in (0, 1),~ \alpha \in (0, 1), $
    $ \rlap-{\lambda} \in (0, 1),~ \sigma \in (0, 1)$
    05:   r =3000, $\rho $ = 0.001
    06:   create $f(x)$, P
    07:    $\tilde m$ 分成训练集和测试集
    08:    start training
    09:   for all $\left\{ {{t_i}, {a_i}, {b_i}} \right\} \in \tilde m$ do
    10:    if ($E > \rho $) do
    11:    $w, b$ 被更新 $w_{ij}^{(l)}, b_i^{(l)}$ according to Eq. (20) and Eq. (21)
    12:    end if
    13:  end for
    14:  输出J
    15: end
    DownLoad: CSV

    表 3  模型预测阶段

    Table 3.  Model prediction stage.

    阶段3: BP网络预测
    01:  开始
    02:   算法预测
    03:   当满足条件时, 执行以下
    04:    if ($E < $$\rho $) do
    05:    停止训练
    06:    得到J
    07:   输入$[{a_{i + 1}}, {b_{i + 1}}]$ to J
    08:   输出$[{\tilde a_{i + 1}}, {\tilde b_{i + 1}}]$
    09:  end if
    10: end
    DownLoad: CSV

    表 4  实验参数

    Table 4.  Experimental parameter setting.

    仿真实验参数符号表示数值
    浮标节点N2
    节点布置区域/m3O$400 \times 400 \times 400$
    普通传感器节点m200
    迭代次数r3000
    正则惩罚因子$\rlap-{\lambda}$0.01
    稀疏性惩罚因子$\sigma $0.03
    稀疏性因子$\tau $0.6
    激活因子$\zeta $0.4
    DownLoad: CSV
    Baidu
  • [1]

    MacKenzie A B, DaSilva L A 2019 Sensors 57 36Google Scholar

    [2]

    Hao X C, Zhang Y X, Jia N, Liu B 2018 Wirel. Pers. Commun. 69 1289Google Scholar

    [3]

    Li N, Hou J C, Sha L 2019 Wirel. Commun. 4 1195Google Scholar

    [4]

    彭海霞, 赵海, 李大舟, 林川 2014 63 090206Google Scholar

    Peng H X, Zhao H, Li D Z, Lin C 2014 Acta Phys. Sin. 63 090206Google Scholar

    [5]

    孙大洋, 钱志鸿, 韩梦飞, 王雪 2014 电子学报 42 1601Google Scholar

    Sun D Y, Qian Z H, Han M F, Wang X 2014 Acta Electron. Sin. 42 1601Google Scholar

    [6]

    Zhang C, Fei S M, Zhou X P 2018 Chin. Phys. B 21 120101Google Scholar

    [7]

    A. A. Syed and J. Heidemann 2006 25th IEEE International Conference on Computer Communications Barcelona, Spain April 23–29, 2006 p161

    [8]

    王慧强, 温秀秀, 林俊宇, 冯光升 2016 通信学报 17 620Google Scholar

    Wang H Q, Weng X X, Lin J Y, Feng G S 2016 Journal of Communications. 17 620Google Scholar

    [9]

    Chirdchoo, N, W. S. Soh, K. C. Chua 2008 Proceedings of the Third Workshop on Underwater Networks (WUWNET), San Francisco, California, USA, September 15, 2008 p201

    [10]

    Yaghoubi F, Abbasfar A A, Maham B 2019 IEEE Commun. Lett. 18 973Google Scholar

    [11]

    Wang X, Sheng M, Liu M, Zhai D, Zhang Y 2018 Wireless Communications and Networking Conference (WCNC) Shanghai, China, April 7–10, 2018 p1009

    [12]

    Sajjad Z, Nasser Y, Amir N 2018 Comput. Netw. 56 902Google Scholar

    [13]

    Zou Y L, Zhu J, Zheng B Y, Tang S L 2010 IEEE Global Telecommunications Conference (GLOBECOM 2010) Miami Florida, USA, December 6–10, 2010 p1

    [14]

    Komali R S, MacKenzie A B 2016 Proceedings of IEEE CCNC Las Vegas Conference Arizona, USA, January 8–10, 2016 p563

    [15]

    Kim S, Yoo Y 2019 INT J DISTRIB SENS N. 8 18Google Scholar

    [16]

    Yu K, Guo Y J, Hedley M 2018 IET Signal Proc. 3 106Google Scholar

    [17]

    Laska J, Bradley W, Rondeau T 2011 IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks Aachen, Germany, May 3–6, 2011 p156

    [18]

    Shi M Z, Wang N Z, Lei B, Ying J J, Zhu C S, Sun Z L, Cui J H, Meng F B, Shang C, Ma L K, Chen X H 2018 New J. Phys. 20 123007Google Scholar

    [19]

    Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S, Fujihisa H, Gotoh Y, Kihou K, Eisaki H, Yoshida Y 2016 J. Am. Chem. Soc. 138 3410Google Scholar

    [20]

    Blomberg E, Tanatar M, Fernandes R, Mazin I, Shen B, WenH H, Johannes M, Schmalian J, Prozorov R 2017 Nat. Commun. 4 1914

    [21]

    Fang L, Luo H Q, Cheng P, Wang Z S, Jia Y, Mu G, Shen B, Mazin I I, Shan L, Ren C, Wen H H 2018 Phys. Rev. B 80 140508

    [22]

    Shimojima T, Sakaguchi F, Ishizaka K, Ishida Y, Kiss T, Okawa M, Togashi T, Chen C T, Watanabe S, Arita M, Shimada K, Namatame H, Taniguchi M, Ohgushi K, Kasahara S, Terashima T, Shibauchi T, Matsuda Y, Chainani A, Shin S 2016 Science 332 564

    [23]

    Ho K C, Lu X, Kovavisaruch L 2017 IEEE Trans. 55 684Google Scholar

    [24]

    Wang C, Li Y, Zhu Z, Jiang S, Lin X, Luo Y, Chi S, Li L, Ren Z, He M, Chen H, Wang Y T, Tao Q, Cao G H, Xu Z A 2017 Phys. Rev. B 79 054521Google Scholar

    [25]

    Newman M E J, Strogatz S H, Watts D J 2011 Phys. Rev. 64 026118Google Scholar

    [26]

    Analytis J G, Kuo H, McDonald R D, Wartenbe M, Hussey N, Fisher I 2016 Nat. Phys. 10 194Google Scholar

    [27]

    Kleinrock L, Silvester J 2008 Proceedings of the National Telecommunications Conference Birmingham Ala, USA, March 27, 2008 p10

    [28]

    Hayes I M, McDonald R D, Breznay N P, Helm T, Moll P J, Wartenbe M, Shekhter A, Analytis J G 2016 Nat. Phys. 12 916Google Scholar

  • [1] Zhang Xu, Ding Jin-Min, Hou Chen-Yang, Zhao Yi-Ming, Liu Hong-Wei, Liang Sheng. Machine learning based laser homogenization method. Acta Physica Sinica, 2024, 73(16): 164205. doi: 10.7498/aps.73.20240747
    [2] Huang Ke, Li Song, Ma Yue, Tian Xin, Zhou Hui, Zhang Zhi-Yu. Theoretical model and correction method of range walk error for single-photon laser ranging. Acta Physica Sinica, 2018, 67(6): 064205. doi: 10.7498/aps.67.20172228
    [3] Lin Fei-Fei, Zeng Zhe-Zhao. Synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive neural network control. Acta Physica Sinica, 2017, 66(9): 090504. doi: 10.7498/aps.66.090504
    [4] Qin Peng, Song You-Jian, Hu Ming-Lie, Chai Lu, Wang Qing-Yue. Timing synchronization based on mode-locked fiber lasers with attosecond timing jitter. Acta Physica Sinica, 2015, 64(22): 224209. doi: 10.7498/aps.64.224209
    [5] Yu Zhen-Tao, Lü Jun-Wei, Bi Bo, Zhou Jing. A vehicle magnetic noise compensation method for the tetrahedron magnetic gradiometer. Acta Physica Sinica, 2014, 63(11): 110702. doi: 10.7498/aps.63.110702
    [6] Han Min, Xu Mei-Ling. A hybrid prediction model of multivariate chaotic time series based on error correction. Acta Physica Sinica, 2013, 62(12): 120510. doi: 10.7498/aps.62.120510
    [7] Zeng Zhe-Zhao. Feedback compensation control on chaotic system with uncertainty based on radial basis function neural network. Acta Physica Sinica, 2013, 62(3): 030504. doi: 10.7498/aps.62.030504
    [8] Li Hai-Yan, Hu Yun-An, Ren Jian-Cun, Zhu Min, Liu Liang. Neural network-based backstepping design for the synchronization of cross-strict feedback hyperchaotic systems with unmatched uncertainties. Acta Physica Sinica, 2012, 61(14): 140502. doi: 10.7498/aps.61.140502
    [9] Li Hua-Qing, Liao Xiao-Feng, Huang Hong-Yu. Synchronization of uncertain chaotic systems based on neural network and sliding mode control. Acta Physica Sinica, 2011, 60(2): 020512. doi: 10.7498/aps.60.020512
    [10] Wu Ran-Chao. Synchronization of delayed discrete-time neural networks. Acta Physica Sinica, 2009, 58(1): 139-142. doi: 10.7498/aps.58.139
    [11] Yu A-Long. Research on the dynamic modeling based on genetic wavelet neural network for the robot wrist force sensor. Acta Physica Sinica, 2008, 57(6): 3385-3390. doi: 10.7498/aps.57.3385
    [12] Wang Xing-Yuan, Zhao Qun. Adaptive projective synchronization and parameter identification of a class of delayed chaotic neural networks. Acta Physica Sinica, 2008, 57(5): 2812-2818. doi: 10.7498/aps.57.2812
    [13] Lou Xu-Yang, Cui Bao-Tong. Anti-synchronization of chaotic delayed neural networks. Acta Physica Sinica, 2008, 57(4): 2060-2067. doi: 10.7498/aps.57.2060
    [14] Yu A-Long. Research on the amplitude frequency characteristics compensation based on wavelet neural network for vibration velocity transducer. Acta Physica Sinica, 2007, 56(6): 3166-3171. doi: 10.7498/aps.56.3166
    [15] Wu Zhong-Qiang, Tan Fu-Xiao, Wang Shao-Xian. The synchronization of hyper-chaotic system of cellular neural network based on passivity. Acta Physica Sinica, 2006, 55(4): 1651-1658. doi: 10.7498/aps.55.1651
    [16] Wang Zhan-Shan, Zhang Hua-Guang, Wang Zhi-Liang. Global synchronization of a class of chaotic neural networks. Acta Physica Sinica, 2006, 55(6): 2687-2693. doi: 10.7498/aps.55.2687
    [17] Yu Ling-Hui, Fang Jian-Cheng. Synchronization of chaotic neural networks based on adaptive inverse control and its applications in secure communications. Acta Physica Sinica, 2005, 54(9): 4012-4018. doi: 10.7498/aps.54.4012
    [18] Shen Jin-Yuan, Li Xian-Guo, Chang Sheng-Jiang, Zhang Yan-Xin. Application of phase features in recognizing 3-D objects. Acta Physica Sinica, 2005, 54(11): 5157-5163. doi: 10.7498/aps.54.5157
    [19] GUAN XIN-PING, TANG YING-GAN, FAN ZHENG-PING, WANG YI-QUN. NEURAL NERWORK BASED ROBUST ADAPTIVE SYNCHRONIZATION OF A CHAOTIC SYSTEM. Acta Physica Sinica, 2001, 50(11): 2112-2115. doi: 10.7498/aps.50.2112
    [20] HE GUO-GUANG, CAO ZHI-TONG. CONTROLLING CHAOS IN CHAOTIC NEURAL NETWORK. Acta Physica Sinica, 2001, 50(11): 2103-2107. doi: 10.7498/aps.50.2103
Metrics
  • Abstract views:  7113
  • PDF Downloads:  147
  • Cited By: 0
Publishing process
  • Received Date:  05 October 2020
  • Accepted Date:  29 December 2020
  • Available Online:  18 May 2021
  • Published Online:  05 June 2021

/

返回文章
返回
Baidu
map