Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ground energy level transition for two-body interacting Fermionic system with spin-orbit coupling and Zeeman interaction

Chen Xing Xue Xiao-Bo Zhang Sheng-Kang Ma Yu-Quan Fei Peng Jiang Yuan Ge Jun

Citation:

Ground energy level transition for two-body interacting Fermionic system with spin-orbit coupling and Zeeman interaction

Chen Xing, Xue Xiao-Bo, Zhang Sheng-Kang, Ma Yu-Quan, Fei Peng, Jiang Yuan, Ge Jun
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Experimental realization of artificial gauge field has made it possible to simulate important models with electromagnetic field or spin-orbit interaction in condensed matter physics, which opens a new avenue to engineer novel quantum states and phenomena. The spin-orbit coupled system reveals many significant phenomena in condensed matter physics, such as quantum spin Hall effect, topological insulator and topological superconductor. The combined effect of Zeeman interaction and spin-orbit coupling leads to a nontrivial topological phase. The analytic solution of few-body system provides an in-depth insight into the physical phenomena, which has been studied extensively. Through the analytic study of two-body physics, we show new quantum phenomena for various gauge field parameters. We investigate the two-body interacting fermionic gas with spin-orbit coupling and Zeeman interaction in a ring trap. Through the plane wave expansion method, two-body fermionic system is solved analytically. In the absence of Zeeman interaction, the total momentum of the ground state is zero. With the increase of Zeeman interaction, an energy level crossing occurs between the lowest energy levels for different total momentum spaces and the ground state changes from zero total momentum space to non-zero total momentum space. Considering the Zeeman interaction, the total momentum of the ground state changes from zero to finite value. The single particle analysis shows that the ground energy level transition is induced by Zeeman energy level splitting. The momentum distributions of the ground state are given to provide an intuitive physical picture. This work can be further extended to the exploration of the heteroatom system, lattice system and higher spin system.
      Corresponding author: Chen Xing, chenxing08@mails.ucas.ac.cn ; Ge Jun, 13466728668@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11704037)
    [1]

    Zhai H 2015 Rep. Prog. Phys. 78 026001Google Scholar

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [3]

    施婷婷, 汪六九, 王璟琨, 张威 2020 69 016701Google Scholar

    Shi T T, Wang L J, Wang J K, Zhang W 2020 Acta Phys. Sin. 69 016701Google Scholar

    [4]

    Lin Y J, Garcis K J, Spielman I B 2011 Nature 83 471

    [5]

    Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301Google Scholar

    [6]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302Google Scholar

    [7]

    Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L C, Li D H, Zhou Q, Zhang J 2016 Nat. Phys. 12 540Google Scholar

    [8]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Sicence 354 83Google Scholar

    [9]

    Zhou J, Zhang W, Yi W 2011 Phys. Rev. A 84 063603Google Scholar

    [10]

    Chen J, Hu H, Gao X L 2014 Phys. Rev. A 90 023619Google Scholar

    [11]

    Meng Z, Huang L, Peng P, Li D, Chen L, Xu Y, Zhang C, Wang P, Zhang J 2016 Phys. Rev. Lett. 117 235304Google Scholar

    [12]

    Dong L, Jiang L, Pu H 2013 New J. Phys. 15 075014Google Scholar

    [13]

    Chen C 2013 Phys. Rev. Lett. 111 235302Google Scholar

    [14]

    Qu C L, Zheng Z, Gong M, Xu Y, Mao L, Zou X B, Guo G C, Zhang C W 2013 Nat. Commun. 4 2710Google Scholar

    [15]

    Zhang W, Yi W 2013 Nat. Commun. 4 2711Google Scholar

    [16]

    Valdés-Curiel A, Trypogeorgos D, Liang Q Y, Anderson R P, Spielman I B arXiv: 1907.08637

    [17]

    Liu X J, Hu H, Pu H 2015 Chin. Phys. B 24 050502Google Scholar

    [18]

    Cao Y, Liu X J, He L Y, Long G L, Hu H 2015 Phys. Rev. A 91 023609Google Scholar

    [19]

    Devreese J P A, Tempere J, Sá de Melo C A R 2014 Phys. Rev. Lett. 113 165304Google Scholar

    [20]

    Luo X B, Zhou K Z, Liu W M, Liang Z X, Zhang Z D 2014 Phys. Rev. A 89 043612Google Scholar

    [21]

    Xu Y, Zhang C W 2015 Phys. Rev. Lett. 114 110401Google Scholar

    [22]

    Zhou K Z, Zhang Z D 2019 J. Phys. Chem. Solids 128 207Google Scholar

    [23]

    Yang S, Wu F, Yi W, Zhang P 2019 Phys. Rev. A 100 043601Google Scholar

    [24]

    Yu Z Q, Zhai H 2011 Phys. Rev. Lett. 107 195305Google Scholar

    [25]

    Vyasanakere J P, Shenoy V B 2012 New J. Phys. 14 043041Google Scholar

    [26]

    Usui A, Fogarty T, Campbell S, Gardiner S A, Busch T 2020 New J. Phys. 22 013050Google Scholar

    [27]

    Li Q M, Callaway J 1991 Phys. Rev. B 43 3278Google Scholar

    [28]

    Cui X L, Yi W 2014 Phys. Rev. X 4 031026

    [29]

    Wang J K, Yi W, Zhang W 2016 Front. Phys. 11 118102Google Scholar

    [30]

    Peng S G, Zhang C X, Tan S, Jiang K J 2018 Phys. Rev. Lett. 120 060408Google Scholar

    [31]

    Cui X L 2017 Phys. Rev. A 95 030701Google Scholar

    [32]

    Gong B H, Li S, Zhang X H 2019 Phys. Rev. A 99 012703Google Scholar

    [33]

    Chen X, Guan L M, Chen S 2011 Eur. Phys. J. D 64 459Google Scholar

    [34]

    Song B, He C D, Zhang S C, Hajiyev E, Huang W, Liu X J, Jo G B 2016 Phys. Rev. A 94 061604Google Scholar

    [35]

    Olshanii M 1998 Phys. Rev. Lett. 81 938Google Scholar

    [36]

    Busch T, Englert B G, Rzazewski K, Wilkens M 2001 J. Phys. B 34 4571Google Scholar

    [37]

    Chen X, Hu H P, Jiang Y Z, Chen S 2013 Eur. Phys. J. D 67 166Google Scholar

  • 图 1  最低能量$ {E_{\rm{0}}}$随着自旋轨道耦合参量$ \alpha$的变化. 插图为$ {E_0} + {\alpha ^2}$$ \alpha$的变化, $ n = 0$, $ g = 1$, $ \beta = 0$

    Figure 1.  The lowest energy ${E_{\rm{0}}}$ versus spin-orbit coupling parameter $\alpha $. Insert is ${E_0} + {\alpha ^2}$ versus $\alpha $. $n = 0$, $g = 1$, $\beta = 0$.

    图 2  在弱相互作用条件下最低能量$ {E_{\rm{0}}}$$ {E_1}$随塞曼系数$ \beta $的变化, $ g = 1$, $ \alpha = 1.2{\text{π}}$

    Figure 2.  The lowest energies ${E_{\rm{0}}}$ and ${E_1}$ versus Zeeman interaction parameter $\beta $ in the weak interaction condition. $g = 1$, $\alpha = 1.2{\text{π}}$.

    图 3  能量${E_0}$${E_1}$随着接触相互作用g的变化, $\alpha = 1.2{\text{π}}$ (a)$\beta = 0$; (b)$\beta = {\text{π}}$; (c) $\beta = 2{\text{π}}$

    Figure 3.  The energies ${E_{\rm{0}}}$ and ${E_1}$ versus contact interaction parameter g, $\alpha = 1.2{\text{π}}$: (a)$\beta = 0$; (b)$\beta = {\text{π}}$; (c)$\beta = 2{\text{π}}$.

    图 4  单粒子能级e和e+ (a) $ \alpha = 0.2{\text{π}}$, $ \beta = 0.1{\text{π}}$; (b) $ \alpha = 1.2{\text{π}}$, $ \beta = {\text{π}}$; (c) $ \alpha = 1.2{\text{π}}$, $ \beta = 2{\text{π}}$

    Figure 4.  The single particle eigenenergies with two branches e and e+: (a) $\alpha = 0.2{\text{π}}$, $\beta = 0.1{\text{π}}$; (b) $\alpha = 1.2{\text{π}}$, $\beta = {\text{π}}$; (c) $\alpha = 1.2{\text{π}}$, $\beta = 2{\text{π}}$.

    图 5  对于不同的$ \alpha $$ \beta $, 基态的动量分布, $ g = 1$

    Figure 5.  The momentum distributions of ground states for different $\alpha $ and $\beta $, $g = 1$.

    Baidu
  • [1]

    Zhai H 2015 Rep. Prog. Phys. 78 026001Google Scholar

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [3]

    施婷婷, 汪六九, 王璟琨, 张威 2020 69 016701Google Scholar

    Shi T T, Wang L J, Wang J K, Zhang W 2020 Acta Phys. Sin. 69 016701Google Scholar

    [4]

    Lin Y J, Garcis K J, Spielman I B 2011 Nature 83 471

    [5]

    Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301Google Scholar

    [6]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302Google Scholar

    [7]

    Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L C, Li D H, Zhou Q, Zhang J 2016 Nat. Phys. 12 540Google Scholar

    [8]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Sicence 354 83Google Scholar

    [9]

    Zhou J, Zhang W, Yi W 2011 Phys. Rev. A 84 063603Google Scholar

    [10]

    Chen J, Hu H, Gao X L 2014 Phys. Rev. A 90 023619Google Scholar

    [11]

    Meng Z, Huang L, Peng P, Li D, Chen L, Xu Y, Zhang C, Wang P, Zhang J 2016 Phys. Rev. Lett. 117 235304Google Scholar

    [12]

    Dong L, Jiang L, Pu H 2013 New J. Phys. 15 075014Google Scholar

    [13]

    Chen C 2013 Phys. Rev. Lett. 111 235302Google Scholar

    [14]

    Qu C L, Zheng Z, Gong M, Xu Y, Mao L, Zou X B, Guo G C, Zhang C W 2013 Nat. Commun. 4 2710Google Scholar

    [15]

    Zhang W, Yi W 2013 Nat. Commun. 4 2711Google Scholar

    [16]

    Valdés-Curiel A, Trypogeorgos D, Liang Q Y, Anderson R P, Spielman I B arXiv: 1907.08637

    [17]

    Liu X J, Hu H, Pu H 2015 Chin. Phys. B 24 050502Google Scholar

    [18]

    Cao Y, Liu X J, He L Y, Long G L, Hu H 2015 Phys. Rev. A 91 023609Google Scholar

    [19]

    Devreese J P A, Tempere J, Sá de Melo C A R 2014 Phys. Rev. Lett. 113 165304Google Scholar

    [20]

    Luo X B, Zhou K Z, Liu W M, Liang Z X, Zhang Z D 2014 Phys. Rev. A 89 043612Google Scholar

    [21]

    Xu Y, Zhang C W 2015 Phys. Rev. Lett. 114 110401Google Scholar

    [22]

    Zhou K Z, Zhang Z D 2019 J. Phys. Chem. Solids 128 207Google Scholar

    [23]

    Yang S, Wu F, Yi W, Zhang P 2019 Phys. Rev. A 100 043601Google Scholar

    [24]

    Yu Z Q, Zhai H 2011 Phys. Rev. Lett. 107 195305Google Scholar

    [25]

    Vyasanakere J P, Shenoy V B 2012 New J. Phys. 14 043041Google Scholar

    [26]

    Usui A, Fogarty T, Campbell S, Gardiner S A, Busch T 2020 New J. Phys. 22 013050Google Scholar

    [27]

    Li Q M, Callaway J 1991 Phys. Rev. B 43 3278Google Scholar

    [28]

    Cui X L, Yi W 2014 Phys. Rev. X 4 031026

    [29]

    Wang J K, Yi W, Zhang W 2016 Front. Phys. 11 118102Google Scholar

    [30]

    Peng S G, Zhang C X, Tan S, Jiang K J 2018 Phys. Rev. Lett. 120 060408Google Scholar

    [31]

    Cui X L 2017 Phys. Rev. A 95 030701Google Scholar

    [32]

    Gong B H, Li S, Zhang X H 2019 Phys. Rev. A 99 012703Google Scholar

    [33]

    Chen X, Guan L M, Chen S 2011 Eur. Phys. J. D 64 459Google Scholar

    [34]

    Song B, He C D, Zhang S C, Hajiyev E, Huang W, Liu X J, Jo G B 2016 Phys. Rev. A 94 061604Google Scholar

    [35]

    Olshanii M 1998 Phys. Rev. Lett. 81 938Google Scholar

    [36]

    Busch T, Englert B G, Rzazewski K, Wilkens M 2001 J. Phys. B 34 4571Google Scholar

    [37]

    Chen X, Hu H P, Jiang Y Z, Chen S 2013 Eur. Phys. J. D 67 166Google Scholar

Metrics
  • Abstract views:  5360
  • PDF Downloads:  62
  • Cited By: 0
Publishing process
  • Received Date:  02 September 2020
  • Accepted Date:  22 January 2021
  • Available Online:  02 April 2021
  • Published Online:  20 April 2021

/

返回文章
返回
Baidu
map