Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Efficient third harmonic generation of 355 nm picosecond laser pulse

Cheng Meng-Yao Wang Zhao-Hua He Hui-Jun Wang Xian-Zhi Zhu Jiang-Feng Wei Zhi-Yi

Citation:

Efficient third harmonic generation of 355 nm picosecond laser pulse

Cheng Meng-Yao, Wang Zhao-Hua, He Hui-Jun, Wang Xian-Zhi, Zhu Jiang-Feng, Wei Zhi-Yi
PDF
HTML
Get Citation
  • Picosecond laser with high-repetition-rate and high pulse energy is widely favorite in many scientific and industrial applications. Some nonlinear crystals can be used to efficiently convert a near-infrared laser into a green laser or an ultraviolet laser which has a higher photon energy and a smaller focal area. Especially for high-quality and high-speed transparent hard material fabrication, green or ultraviolet picosecond laser has been found to possess unique advantages. In this paper, the experiments on high-efficiency second-harmonic-generation (SHG) and third-harmonic-generation (THG) by using a home-made all-solid-state picosecond laser amplifier and an LBO crystal are reported. The picosecond laser amplifier consists of a seed source, a regenerative amplifier and a two-stage single-pass amplifier. The seed source is a commercial all-solid-state picosecond oscillator with a pulse duration of 8.3 ps and a repetition rate of 68 MHz. The repetition rate is reduced from 68 MHz to 500 kHz by an electro-optic Pockels cell (PC), and the period doubling bifurcation is minimized by reducing the duration of high voltage in PC. Both the regenerative amplifier and the two-stage single-pass amplifier are pumped by three 30-W continuous-wave fiber-coupled laser diodes. After the regenerative amplifier, the seed laser is amplified to 4.86 W with a repetition rate of 500 kHz at 1064 nm. Then the laser power is increased to 23.2 W by a two-stage single-pass amplifier, and the M2 value of the amplified laser in the X direction and in the Y direction are 1.330 and 1.235, respectively. The final pulse duration is 13.4 ps, which is slightly stretched in the amplification chain compared with the seed pulse duration (8.3 ps). For high-efficiency SHG and THG from near-infrared to green and ultraviolet, we carefully study the optical characteristics of some nonlinear crystals, such as LBO, BBO, BIBO, CLBO, etc., and we find that the LBO crystal, which has a high damage threshold, small walk-off and high nonlinear coefficient, is the best choice for both SHG and THG. Then the parameters of the two crystals for SHG and THG are specially designed according to the phase matching condition, the walk-off and the laser parameter. As a result, a 4-mm-long type-I phase matching LBO with cutting angle of θ = 90° and φ = 11.6° is used for SHG, and a 3-mm-long type-II phase matching LBO with cutting angle of θ = 42.2° and φ = 90° is used for THG. Finally, we realize high-efficiency frequency conversion with SHG power of 12.7 W at 532 nm and THG power of 9.25 W at 355 nm. The corresponding optical-optical conversion efficiencies reach 54.7% and 39.6%, respectively.
      Corresponding author: Wang Zhao-Hua, zhwang@iphy.ac.cn ; Wei Zhi-Yi, zywei@iphy.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB16030200), the National Natural Science Foundation of China (Grant Nos. 11774410, 61575217), the National Key Research and Development Program of China (Grant No. 2017YFC0110301), and the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant No. KJZD-EW-L11-03).
    [1]

    Erny C, Heese C, Haag M, Gallmann L, Keller U 2009 Opt. Express 17 1340Google Scholar

    [2]

    王鹏, 赵环, 王兆华, 李德华, 魏志义 2006 55 4161Google Scholar

    Wang P, Zhao H, Wang Z H, Li D H, Wei Z Y 2006 Acta Phys. Sin. 55 4161Google Scholar

    [3]

    何会军, 蒋建旺, 程梦尧, 宋贾俊, 王兆华, 方少波, 魏志义 2018 光子学报 47 0914002

    He H J, Jiang J W, Cheng M Y, Song J J, Wang Z H, Fang S B, Wei Z Y 2018 Acta Photon. Sin. 47 0914002

    [4]

    Muhammad N, Whitehead D, Boor A, Oppenlander W, Liu Z, Li L 2012 Appl. Phys. A 106 607Google Scholar

    [5]

    Weck A, Crawford T H R, Wilkinson D S, Haugen H K, Preston J S 2008 Appl. Phys. A 90 537Google Scholar

    [6]

    张菲, 段军, 曾晓雁, 李祥友 2009 中国激光 36 3143

    Zhang F, Duan J, Zeng X Y, Li X Y 2009 Chin. J. Las. 36 3143

    [7]

    Rauch T, Delmdahl R, Pfeufer V, Mondry M 2009 Laser Tech. J. 6 20

    [8]

    Norreys P A, Zepf M, Moustaizis S, Fews A P, Zhang J, Lee P, Bakarezos M, Danson C N, Dyson A, Gibbon P, Loukakos P, Neely D, Walsh F N, Wark J S, Dangor A E 1996 Phys. Rev. Lett. 76 1832Google Scholar

    [9]

    Liu J X, Wang W, Wang Z H, Lü Z G, Zhang Z Y, Wei Z Y 2015 Appl. Sci. 5 1590Google Scholar

    [10]

    Offerhaus H L, Godfried H P, Witteman W J 1996 Opt. Commun. 128 61Google Scholar

    [11]

    Dörring J, Killi A, Morgner U, Lang A, Lederer M, Kopf D 2004 Opt. Express 12 1759Google Scholar

    [12]

    毛小洁, 秘国江, 庞庆生, 邹跃 2013 中国激光 38 1002004

    Mao X J, Bi G J, Pang Q S, Zou Y 2013 Chin. J. Las. 38 1002004

    [13]

    Zhu P, Li D J, Liu Q Y, Chen J, Fu S J, Shi P, Du K M, Loosen P 2013 Opt. Lett. 38 4716Google Scholar

    [14]

    Borsutzky A, Briinger R, Huang C H, Wallenstein R 1991 Appl. Phys. B 52 55Google Scholar

    [15]

    Ghotbi M, Sun Z, Majchrowski A, Michalski E, Kityk I V, Ebrahim Z M 2006 Appl. Phys. Lett. 89 173124Google Scholar

    [16]

    Ueda K, Orii Y,Takahashi Y, Okada G, Mori Y, Yoshimura M 2016 Opt. Express 24 30465Google Scholar

    [17]

    Guo L, Wang G L, Zhang H B, Cui D F, Wu Y C, Lu L, Zhang J Y, Huang J Y, Xu Z Y 2007 Appl. Phys. B 88 197Google Scholar

    [18]

    Yoshida H, Fujita H, Nakatsuka M, Yoshimura M, Sasaki T, Kamimura T, Yoshida K 2006 Jpn. J. Appl. Phys. 45 766Google Scholar

    [19]

    王正平, 滕冰, 杜晨林, 许心光, 傅琨, 许贵宝, 王继扬, 邵宗书 2003 52 2176Google Scholar

    Wang Z P, Teng B, Du C L, Xu X G, Fu K, Xu G B, Wang J Y, Shao Z S 2003 Acta Phys. Sin. 52 2176Google Scholar

    [20]

    Wu Y C, Sasaki T, Nakai S, Yokotani A, Tang H G, Chen C T 1993 Appl. Phys. Lett. 62 2614Google Scholar

    [21]

    Wu B C, Chen N, Chen C T, Deng D Q, Xu Z Y 1989 Opt. Lett. 14 1080Google Scholar

    [22]

    Chen L Y, Bai Z X, Pan Y L, Chen M, Li G 2013 Opt. Eng. 52 086107Google Scholar

  • 图 1  全固态皮秒激光放大器及SHG与THG光路图(HR, 高反镜; DM, 双色镜; LD, 二极管激光器; HT 1064 HR 532, 在1064 nm处高透, 在532 nm处高反)

    Figure 1.  Structure of all-solid-state picosecond laser amplifier, SHG and THG (HR, high reflectivity mirror; DM, dichroic mirror; LD, laser diode; HT 1064 HR 532: high transmittance @ 1064 nm and high reflectivity @ 532 nm).

    图 2  种子光和基频光自相关曲线(sech2拟合) (a)种子光自相关曲线; (b)基频光自相关曲线

    Figure 2.  Self-reference curve of seed laser and fundamental laser (sech2 fitting): (a) Self-referencecurve of seed laser; (b) self-reference curve of fundamental laser.

    图 3  基频光光谱图和光束质量(M2)图 (a)基频光光谱图; (b)基频光光束质量(M2)图

    Figure 3.  Wavelength and beam quality (M2) of fundamental laser: (a) Wavelength of fundamental laser; (b) beam quality (M2) of fundamental laser.

    图 4  SHG与THG过程中光束空间走离及补偿的原理示意图

    Figure 4.  Schematic diagram of space walk-off and compensation for SHG and THG.

    图 5  SHG激光功率稳定性

    Figure 5.  Power stability of SHG power.

    图 6  THG激光功率曲线图

    Figure 6.  THG output power versus input power.

    图 7  (a) SHG与(b) THG光谱图

    Figure 7.  Wavelength of (a) SHG and (b) THG.

    表 1  非线性晶体参数

    Table 1.  Parameters of nonlinear crystal.

    晶体透射范围/nm损伤阈值/GW·cm–2deff 11/pm·V–1deff 22/pm·V–1走离角1/mrad走离角2/mrad
    LBO160—260036.3[18]0.83 (xy)0.53 (yz)7.06 (xy)9.30 (yz)
    BBO185—260018.27[18]2.012.0255.8672.33
    KDP177—170020[18]0.260.3228.0630.12
    BIBO286—25003.4[19]2.96 (yz)3.9 (yz)25.74 (yz)67.86 (yz)
    CLBO180—257027.3[18]0.380.5231.4137.16
    CBO170—300026[20]1.01 (xz)1.19 (xy)31.17 (xz)16.25 (xy)
    注: 1, 1064 nm倍频输出532 nm的条件下; 2, 1064 nm与532 nm和频输出355 nm的条件下
    DownLoad: CSV
    Baidu
  • [1]

    Erny C, Heese C, Haag M, Gallmann L, Keller U 2009 Opt. Express 17 1340Google Scholar

    [2]

    王鹏, 赵环, 王兆华, 李德华, 魏志义 2006 55 4161Google Scholar

    Wang P, Zhao H, Wang Z H, Li D H, Wei Z Y 2006 Acta Phys. Sin. 55 4161Google Scholar

    [3]

    何会军, 蒋建旺, 程梦尧, 宋贾俊, 王兆华, 方少波, 魏志义 2018 光子学报 47 0914002

    He H J, Jiang J W, Cheng M Y, Song J J, Wang Z H, Fang S B, Wei Z Y 2018 Acta Photon. Sin. 47 0914002

    [4]

    Muhammad N, Whitehead D, Boor A, Oppenlander W, Liu Z, Li L 2012 Appl. Phys. A 106 607Google Scholar

    [5]

    Weck A, Crawford T H R, Wilkinson D S, Haugen H K, Preston J S 2008 Appl. Phys. A 90 537Google Scholar

    [6]

    张菲, 段军, 曾晓雁, 李祥友 2009 中国激光 36 3143

    Zhang F, Duan J, Zeng X Y, Li X Y 2009 Chin. J. Las. 36 3143

    [7]

    Rauch T, Delmdahl R, Pfeufer V, Mondry M 2009 Laser Tech. J. 6 20

    [8]

    Norreys P A, Zepf M, Moustaizis S, Fews A P, Zhang J, Lee P, Bakarezos M, Danson C N, Dyson A, Gibbon P, Loukakos P, Neely D, Walsh F N, Wark J S, Dangor A E 1996 Phys. Rev. Lett. 76 1832Google Scholar

    [9]

    Liu J X, Wang W, Wang Z H, Lü Z G, Zhang Z Y, Wei Z Y 2015 Appl. Sci. 5 1590Google Scholar

    [10]

    Offerhaus H L, Godfried H P, Witteman W J 1996 Opt. Commun. 128 61Google Scholar

    [11]

    Dörring J, Killi A, Morgner U, Lang A, Lederer M, Kopf D 2004 Opt. Express 12 1759Google Scholar

    [12]

    毛小洁, 秘国江, 庞庆生, 邹跃 2013 中国激光 38 1002004

    Mao X J, Bi G J, Pang Q S, Zou Y 2013 Chin. J. Las. 38 1002004

    [13]

    Zhu P, Li D J, Liu Q Y, Chen J, Fu S J, Shi P, Du K M, Loosen P 2013 Opt. Lett. 38 4716Google Scholar

    [14]

    Borsutzky A, Briinger R, Huang C H, Wallenstein R 1991 Appl. Phys. B 52 55Google Scholar

    [15]

    Ghotbi M, Sun Z, Majchrowski A, Michalski E, Kityk I V, Ebrahim Z M 2006 Appl. Phys. Lett. 89 173124Google Scholar

    [16]

    Ueda K, Orii Y,Takahashi Y, Okada G, Mori Y, Yoshimura M 2016 Opt. Express 24 30465Google Scholar

    [17]

    Guo L, Wang G L, Zhang H B, Cui D F, Wu Y C, Lu L, Zhang J Y, Huang J Y, Xu Z Y 2007 Appl. Phys. B 88 197Google Scholar

    [18]

    Yoshida H, Fujita H, Nakatsuka M, Yoshimura M, Sasaki T, Kamimura T, Yoshida K 2006 Jpn. J. Appl. Phys. 45 766Google Scholar

    [19]

    王正平, 滕冰, 杜晨林, 许心光, 傅琨, 许贵宝, 王继扬, 邵宗书 2003 52 2176Google Scholar

    Wang Z P, Teng B, Du C L, Xu X G, Fu K, Xu G B, Wang J Y, Shao Z S 2003 Acta Phys. Sin. 52 2176Google Scholar

    [20]

    Wu Y C, Sasaki T, Nakai S, Yokotani A, Tang H G, Chen C T 1993 Appl. Phys. Lett. 62 2614Google Scholar

    [21]

    Wu B C, Chen N, Chen C T, Deng D Q, Xu Z Y 1989 Opt. Lett. 14 1080Google Scholar

    [22]

    Chen L Y, Bai Z X, Pan Y L, Chen M, Li G 2013 Opt. Eng. 52 086107Google Scholar

  • [1] Gao Rong, Yang Ya-Nan, Zhan Chen-Yi, Zhang Zong-Zhen, Deng Yi, Wang Zi-Xiao, Liang Kun, Feng Su-Chun. Design of optical frequency comb based on dual frequency pumped normal dispersion silicon carbide microresonator. Acta Physica Sinica, 2024, 73(3): 034203. doi: 10.7498/aps.73.20231442
    [2] Shi Liang-Zhu, Zhang Meng, Chu Yu-Xi, Liu Bo-Wen, Hu Ming-Lie. 206 nm deep ultraviolet laser generated from fifth harmonic of femtosecond fiber laser. Acta Physica Sinica, 2023, 72(22): 224209. doi: 10.7498/aps.72.20230877
    [3] Li Ming-Zhou, Li Zhi-Yuan. Structure design and numerical simulation of chirped periodically polarized lithium niobate crystal for broadband mid-infrared laser generation. Acta Physica Sinica, 2022, 71(13): 134206. doi: 10.7498/aps.71.20220016
    [4] Huang Wen-Yi, Yang Bao-Dong, Fan Jian, Wang Jun-Min, Zhou Hai-Tao. Coherent blue light enhancement via repumping laser in cesium vapor. Acta Physica Sinica, 2022, 71(18): 187801. doi: 10.7498/aps.71.20220480
    [5] Li Hai-Peng, Zhou Jia-Sheng, Ji Wei, Yang Zi-Qiang, Ding Hui-Min, Zhang Zi-Tao, Shen Xiao-Peng, Han Kui. Effect of edge on nonlinear optical property of graphene quantum dots. Acta Physica Sinica, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [6] Liu Peng-Xiang, Li Wei, Guo Li-Yuan, Qi Feng, Pang Zi-Bo, Li Wei-Fan, Wang Ye-Long, Liu Zhao-Yang. Terahertz wave up-conversion detection based on organic nonlinear optical crystals. Acta Physica Sinica, 2021, 70(5): 050701. doi: 10.7498/aps.70.20201908
    [7] Bai Rui-Xue, Yang Jue-Han, Wei Da-Hai, Wei Zhong-Ming. Research progress of low-dimensional semiconductor materials in field of nonlinear optics. Acta Physica Sinica, 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [8] Zeng Zhou-Xiao-Song, Wang Xiao, Pan An-Lian. Second harmonic generation of two-dimensional layered materials: characterization, signal modulation and enhancement. Acta Physica Sinica, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [9] Liu Zhi-Wei, Zhang Bin, Chen Yu. Two-dimensional nanomaterials and their derivatives for laser protection. Acta Physica Sinica, 2020, 69(18): 184201. doi: 10.7498/aps.69.20200313
    [10] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [11] Deng Jun-Hong, Li Gui-Xin. Nonlinear photonic metasurfaces. Acta Physica Sinica, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [12] Cheng Qiu-Hu, Wang Shi-Yu, Guo Zhen, Cai De-Fang, Li Bing-Bin. Simulation model of super Gaussian beam pumped Q-switched solid-state laser. Acta Physica Sinica, 2017, 66(18): 180204. doi: 10.7498/aps.66.180204
    [13] Shen Xue-Ju, Wang Long, Han Yu-Dong, Li Zheng. Optical limiting of a methyl-red dye doped suspended carbon nanotube mixture. Acta Physica Sinica, 2010, 59(4): 2532-2536. doi: 10.7498/aps.59.2532
    [14] Sun Bo, Liu Jin-Song, Ling Fu-Ri, Wang Ke-Jia, Zhu Da-Qing, Yao Jian-Quan. Investigation of the operation characteristics of terahertz-wave parametric oscillator based on LiTaO3. Acta Physica Sinica, 2009, 58(3): 1745-1751. doi: 10.7498/aps.58.1745
    [15] Wang Lei, Hu Hui-Fang, Wei Jian-Wei, Zeng Hui, Yu Ying-Ying, Wang Zhi-Yong, Zhang Li-Juan. Theoretical study on the first hyperpolarizabilities of stilbene derivatives. Acta Physica Sinica, 2008, 57(5): 2987-2993. doi: 10.7498/aps.57.2987
    [16] Zhang Xian-Bin, Shi Wei. Optimize the output performance by shortening the cavity length of the THz electromagnetic wave parametric oscillator. Acta Physica Sinica, 2006, 55(10): 5237-5241. doi: 10.7498/aps.55.5237
    [17] Liang Xiao-Rui, Zhao Bo, Zhou Zhi-Hua. Ab initio study on the second-order nonlinear optical properties of some coumarin derivatives. Acta Physica Sinica, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [18] Mo Jia-Qi, Zhang Wei-Jiang, He Ming. Calculation of the transmission wave of a laser pulse amplifier. Acta Physica Sinica, 2006, 55(7): 3233-3236. doi: 10.7498/aps.55.3233
    [19] Liu Ren-Hong, Cai Xi-Jie, Yang Lin, Zhang Zhi-Xiang, Bi Ji-Jun. Study on gain fluence curve of a laser pulse amplifier. Acta Physica Sinica, 2005, 54(7): 3140-3143. doi: 10.7498/aps.54.3140
    [20] Wang Shi-Yu, Guo Zhen, Fu Jun-Mei, Cai De-Fang, Wen Jian-Guo, Tang Ying-De. Effect of the pump light on the beam quality of the diode pumped laser. Acta Physica Sinica, 2004, 53(9): 2995-3003. doi: 10.7498/aps.53.2995
Metrics
  • Abstract views:  13712
  • PDF Downloads:  496
  • Cited By: 0
Publishing process
  • Received Date:  08 April 2019
  • Accepted Date:  26 April 2019
  • Available Online:  01 June 2019
  • Published Online:  20 June 2019

/

返回文章
返回
Baidu
map