-
Femtosecond pulse measurement of ultrafast spectrum is one of the important research directions in the ultrafast laser field. The conventional femtosecond pulse autocorrelation method is implemented by measuring the autocorrelated frequency-doubling signal, and the frequency-doubling signal has wavelength selectivity, so the femtosecond pulse measurement for the case of different central wavelengths needs to replace different frequency-doubling crystals, which is very inconvenient. This paper reports a kind of modified transient grating frequency resolution optical gating for measuring the femtosecond pulses. The method combines frequency-resolved optical gating (FROG) method with four-wave mixing. Its basic process is to divide the pulse to be measured into three beams. Two of the pulses can reach spatiotemporal coincidence on optical medium through precise delay control and focus. The other pulse interacts with the transient grating, and serves as the detection light to produce signal light. The spectrum and delay time of the signal light are measured by a spectrometer, and the spectrum and electric field information of the femtosecond pulse to be measured are obtained through the inversion iterative algorithm. Because this method only needs the power density of the measured light to reach the third-order nonlinear effect, it can be applied to the femtosecond pulse measurement of any central wavelength. We use this method to measure the femtosecond pulses with the central wavelengths of 800 nm and 400 nm respectively, and the ultra-wide spectrum femtosecond pulses with the period magnitude of sub-10 fs, and compare the measurement results with the results obtained with the conventional interferometric autocorrelation instrument. They are basically consistent. The experimental results show that our frequency-resolved optical switching method based on transient grating is very effective for measuring the femtosecond pulses with different central wavelengths and pulse widths.
[1] Fork R L, Greene B I, Shank C V 1981 Appl. Phys. Lett. 38 671Google Scholar
[2] Ell R, Angelow G, Seitz W, Lederer M J, Heinz H, Kopf D, Birge J R, Kärtner F X 2005 Opt. Express. 13 9292Google Scholar
[3] Nisoli M, De Silvestri S, Svelto O 1996 Appl. Phys. Lett. 68 2793Google Scholar
[4] Zhang W, Teng H, Yun C X, Zhong X, Hou X, Wei Z Y 2010 Chin. Phys. Lett. 27 054211Google Scholar
[5] He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P, Huang H D, Zhong S Y, Jiang Y J, Fang S B, Hou X, Wei Z Y 2017 Opt. Lett. 42 474Google Scholar
[6] Wirth A, Hassan M T, Grguraš I, Gagnon J, Moule t A, Luu T T, Pabst S, Santra R, Alahmed Z A, Azzeer A M, Yakovlev V S, Pervak V, Krausz F, Goulielmakis E 2011 Science 334 195Google Scholar
[7] Hassan M Th, Wirth A, Grguraš I, Moulet A, Luu T T, Gagnon J, Pervak V, Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301Google Scholar
[8] Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437Google Scholar
[9] Weber H P 1967 J. Appl. Phys. 38 2231Google Scholar
[10] Diels J C, Stryland E W V, Gold D 1978 Picosecond Phenomena (Berlin: Springer-Verlag) pp117−120
[11] Kane D J, Trebino R 1993 IEEE J. Quantum Elect. 29 571Google Scholar
[12] Delong K W, Trebino R 1994 J. Opt. Soc. Am. A 11 2429Google Scholar
[13] Trebino R, Kane D J 1993 J. Opt. Soc. Am. A 10 1101Google Scholar
[14] Kane D J, Trebino R 1993 Opt. Lett. 18 823Google Scholar
[15] Delong K W, Trebino R, Hunter J, White W E 1994 J. Opt. Soc. Am. B 11 2206Google Scholar
[16] Iaconis C, Walmsley I A 1999 IEEE J. Quantum Elect. 35 4
[17] Li M, Nibarger J P, Guo C L, Gibson G N 1999 Appl. Optics 38 5250Google Scholar
[18] Sweetser J N, Fittinghoff D N, Trebino R 1997 Opt. Lett. 22 519Google Scholar
[19] Zhang N H, Teng H, Huang H D, Tian W L, Zhu J F, Wu H P, Pan S L, Fang S B, Wei Z Y 2016 Chin. Phys. B 25 124204Google Scholar
[20] 黄沛, 方少波, 黄杭东, 赵昆, 滕浩, 侯洵, 魏志义 2018 67 214202Google Scholar
Huang P, Fang S B, Huang H D, Zhao K, Teng H, Hou X, Wei Z Y 2018 Acta Phys. Sin. 67 214202Google Scholar
[21] Eichler H J, Gunter P, Pohl D W 1985 Laser-Induced Dynamic Gratings (Berlin: Springer-Verlag) pp193—198
[22] Eckbreth A C 1978 Appl. Phys. Lett. 32 421Google Scholar
-
-
[1] Fork R L, Greene B I, Shank C V 1981 Appl. Phys. Lett. 38 671Google Scholar
[2] Ell R, Angelow G, Seitz W, Lederer M J, Heinz H, Kopf D, Birge J R, Kärtner F X 2005 Opt. Express. 13 9292Google Scholar
[3] Nisoli M, De Silvestri S, Svelto O 1996 Appl. Phys. Lett. 68 2793Google Scholar
[4] Zhang W, Teng H, Yun C X, Zhong X, Hou X, Wei Z Y 2010 Chin. Phys. Lett. 27 054211Google Scholar
[5] He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P, Huang H D, Zhong S Y, Jiang Y J, Fang S B, Hou X, Wei Z Y 2017 Opt. Lett. 42 474Google Scholar
[6] Wirth A, Hassan M T, Grguraš I, Gagnon J, Moule t A, Luu T T, Pabst S, Santra R, Alahmed Z A, Azzeer A M, Yakovlev V S, Pervak V, Krausz F, Goulielmakis E 2011 Science 334 195Google Scholar
[7] Hassan M Th, Wirth A, Grguraš I, Moulet A, Luu T T, Gagnon J, Pervak V, Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301Google Scholar
[8] Dubietis A, Jonusauskas G, Piskarskas A 1992 Opt. Commun. 88 437Google Scholar
[9] Weber H P 1967 J. Appl. Phys. 38 2231Google Scholar
[10] Diels J C, Stryland E W V, Gold D 1978 Picosecond Phenomena (Berlin: Springer-Verlag) pp117−120
[11] Kane D J, Trebino R 1993 IEEE J. Quantum Elect. 29 571Google Scholar
[12] Delong K W, Trebino R 1994 J. Opt. Soc. Am. A 11 2429Google Scholar
[13] Trebino R, Kane D J 1993 J. Opt. Soc. Am. A 10 1101Google Scholar
[14] Kane D J, Trebino R 1993 Opt. Lett. 18 823Google Scholar
[15] Delong K W, Trebino R, Hunter J, White W E 1994 J. Opt. Soc. Am. B 11 2206Google Scholar
[16] Iaconis C, Walmsley I A 1999 IEEE J. Quantum Elect. 35 4
[17] Li M, Nibarger J P, Guo C L, Gibson G N 1999 Appl. Optics 38 5250Google Scholar
[18] Sweetser J N, Fittinghoff D N, Trebino R 1997 Opt. Lett. 22 519Google Scholar
[19] Zhang N H, Teng H, Huang H D, Tian W L, Zhu J F, Wu H P, Pan S L, Fang S B, Wei Z Y 2016 Chin. Phys. B 25 124204Google Scholar
[20] 黄沛, 方少波, 黄杭东, 赵昆, 滕浩, 侯洵, 魏志义 2018 67 214202Google Scholar
Huang P, Fang S B, Huang H D, Zhao K, Teng H, Hou X, Wei Z Y 2018 Acta Phys. Sin. 67 214202Google Scholar
[21] Eichler H J, Gunter P, Pohl D W 1985 Laser-Induced Dynamic Gratings (Berlin: Springer-Verlag) pp193—198
[22] Eckbreth A C 1978 Appl. Phys. Lett. 32 421Google Scholar
Catalog
Metrics
- Abstract views: 10134
- PDF Downloads: 200
- Cited By: 0