Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of Hydrogen-like impurity and thickness effect on quantum transition of a two-level system in an asymmetric Gaussian potential quantum dot

Bai Xu-Fang Zhao Yu-Wei Yin Hong-Wu Eerdunchaolu

Citation:

Influence of Hydrogen-like impurity and thickness effect on quantum transition of a two-level system in an asymmetric Gaussian potential quantum dot

Bai Xu-Fang, Zhao Yu-Wei, Yin Hong-Wu, Eerdunchaolu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Considering hydrogen-like impurity and the thickness effect,the eigenvalues and eigenfunctions of the electron ground state and first exited state in a quantum dot (QD) are derived by using the Lee-Low-Pines-Pekar variational method with a parabolic confinement potential well (PCPW) and an asymmetric Gaussian functional confinement potential well (AGFCPW) serving as the transverse and longitudinal confinement potential,respectively.Based on the above two states,a two-level system is constructed.Then,the electron quantum transition affected by a magnetic field is discussed in terms of the two-level system theory.The numerical calculations indicate that the electron transition probability Q deceases with the range R0 of the PCPW decreasing.With R0 decreasing,the amplitude of the transition probability Q decreases greatly when R0 is small (R0 2.5rp),but the decrease becomes small when R0 is large (R0 2.5rp).The transition probability Q decreases with the dielectric constant ratio increasing.For different values of the well width L of the AGFCPW,the change forms of the transition probability Q with the well width L are different:the transition probability Q decreases monotonically with the decreasing of the well width L when L is large (L 1.3rp), which is similar to the trend of the transition probability Q changing with the range R0 of the PCPW,but the oscillation of the transition probability Q is small with the decreasing of the well width L when L is small (L 1.3rp).Whereas, both changes are consistent basically when the range of the confinement potential (the value of R0 or L) is large since the AGFCPW can be approximated by the PCPW when z/L ≪ 1.For the electronic state and its change in the QD with a confinement potential,in any case,the results are rough without regard to the influence arising from the thickness of the QD.This shows that the AGFCPW is more accurate than the PCPW in reflecting the real confinement potential. This conclusion is in accordance with the experimental results.In addition,the transition probability Q decreases with increasing V0.The amplitude of the transition probability Q decreasing with increasing the dielectric constant ratio is enlarged with reducing the coupling strength .This indicates that the phonon (the polarization of the medium) effect cannot be ignored when investigating the change of the electronic state in the QD.The transition probability Q periodically oscillates and goes up with increasing the cyclotron frequency c.The external magnetic field is a kind of inducement causing the quantum transition of electronic state.The transition probability Q periodically oscillates and goes up with increasing the cyclotron frequency c,and is affected dramatically by the coupling strength :with increasing the coupling strength ,the oscillation period of Q increases,but the oscillation amplitude decreases.In a word,the transition probability of the electron is influenced significantly by some physical quantities,such as the coupling strength ,the dielectric constant ratio ,the resonant frequency of the magnetic field c,the well depth V0, and the well width L of AGFCPW.
      Corresponding author: Eerdunchaolu, eerdunchaolu@163.com
    • Funds: Project supported by the National Nature Science Foundation of Hebei Province, China (Grant No. E2013407119) and the Items of Institution of Higher Education Scientific Research of Inner Mongolia, China (Grant No. NJZY14189).
    [1]

    Dou X M, Ying Y U, Sun B Q, Jiang D S, Ni H Q, Niu Z C 2012 Chin. Phys. Lett. 29 104203

    [2]

    Wang H Y, Su D, Yang S, Dou X M, Zhu H J, Jiang D S, Ni H Q, Niu Z C, Zhao C L, Sun B Q 2015 Chin. Phys. Lett. 32 107804

    [3]

    Yang S, Dou X M, Yu Y, Ni H Q, Niu Z C, Jiang D S, Sun B Q 2015 Chin. Phys. Lett. 32 077804

    [4]

    Xue Y Z, Chen Z S, Ni H Q, Niu Z C, Jiang D S, Dou X M, Sun B Q 2017 Chin. Phys. B 26 084202

    [5]

    Li B X, Zheng J, Chi F 2012 Chin. Phys. Lett. 29 107302

    [6]

    Shi L, Yan Z W 2013 Eur. Phys. J. B 86 244

    [7]

    Li B X, Zheng J, Chi F 2014 Chin. Phys. Lett. 31 057302

    [8]

    Feng Z Y, Yan Z W 2016 Chin. Phys. B 25 107804

    [9]

    Li W P, Xiao J L, Yin J W, Yu Y F, Wang Z W 2010 Chin. Phys. B 19 047102

    [10]

    Chen Y J, Xiao J L 2013 J. Low Temp. Phys. 170 60

    [11]

    Bai X F, Xin W, Yin H W, Eerdunchaolu 2017 Int. J. Theor. Phys. 56 1673

    [12]

    Sun Y, Ding Z H, Xiao J L 2017 J. Electron. Mater. 46 439

    [13]

    Gu J, Liang J J 2005 Acta Phys. Sin. 54 5335 (in Chinese)[谷娟, 梁九卿 2005 54 5335]

    [14]

    Fotue A J, Kenfack S C, Tiotsop M, Issofa N, Tabue Djemmo M P, Wirngo A V, Fotsin H, Fai L C 2016 Eur. Phys. J. Plus. 131 75

    [15]

    Jacak L, Hawrylak P, Wojs A 1998 Quantum Dots (Berlin:Springer)

    [16]

    Adamowski J, Sobkowicz M, Szafran B, Bednarek S 2000 Phys. Rev. B 62 4234

    [17]

    Xie W F 2003 Solid State Commun. 127 401

    [18]

    Hai G Q, Peeters F M, Devreese J T 1993 Phys. Rev. B 47 10358

    [19]

    Liang S D, Chen C Y, Jiang S C, Lin D L 1996 Phys. Rev. B 53 15459

    [20]

    Xiao J L 2016 Int. J. Theor. Phys. 55 147

    [21]

    Khordad R, Goudarzi S, Bahramiyan H 2016 Indian J. Phys. 90 659

    [22]

    Wei X W, Qi B, Xiao J L 2015 J. Low Temp. Phys. 179 166

    [23]

    Miao X J, Sun Y, Xiao J L 2015 J. Korean Phys. Soc. 67 1197

    [24]

    Lee T D, Low F M, Pines S D 1953 Phys. Rev. 90 297

    [25]

    Landau L D, Pekar S I 1948 Zh. Eksp. Teor. Fiz. 18 419

    [26]

    Pekar S I, Deigen M F 1948 Zh. Eksp. Teor. Fiz. 18 481

    [27]

    Pekar S I 1954 Untersuchungen ber die Elektronentheorie der Kristalle (Berlin: Akademie Verlag)

    [28]

    Li W P, Yin J W, Yu Y F, Xiao J L, Wang Z W 2009 Int. J. Theor. Phys. 48 3339

    [29]

    Eerdunchaolu, Xiao J L 2007 J. Phys. Soc. Jpn. 76 044702

    [30]

    Li S S, Kong X J 1992 J. Phys. Condens. Matter 4 4815

    [31]

    Li S S, Xia J B 2007 J. Appl. Phys. 101 093716

    [32]

    Li S S, Xia J B 2007 Phys. Lett. A 366 120

  • [1]

    Dou X M, Ying Y U, Sun B Q, Jiang D S, Ni H Q, Niu Z C 2012 Chin. Phys. Lett. 29 104203

    [2]

    Wang H Y, Su D, Yang S, Dou X M, Zhu H J, Jiang D S, Ni H Q, Niu Z C, Zhao C L, Sun B Q 2015 Chin. Phys. Lett. 32 107804

    [3]

    Yang S, Dou X M, Yu Y, Ni H Q, Niu Z C, Jiang D S, Sun B Q 2015 Chin. Phys. Lett. 32 077804

    [4]

    Xue Y Z, Chen Z S, Ni H Q, Niu Z C, Jiang D S, Dou X M, Sun B Q 2017 Chin. Phys. B 26 084202

    [5]

    Li B X, Zheng J, Chi F 2012 Chin. Phys. Lett. 29 107302

    [6]

    Shi L, Yan Z W 2013 Eur. Phys. J. B 86 244

    [7]

    Li B X, Zheng J, Chi F 2014 Chin. Phys. Lett. 31 057302

    [8]

    Feng Z Y, Yan Z W 2016 Chin. Phys. B 25 107804

    [9]

    Li W P, Xiao J L, Yin J W, Yu Y F, Wang Z W 2010 Chin. Phys. B 19 047102

    [10]

    Chen Y J, Xiao J L 2013 J. Low Temp. Phys. 170 60

    [11]

    Bai X F, Xin W, Yin H W, Eerdunchaolu 2017 Int. J. Theor. Phys. 56 1673

    [12]

    Sun Y, Ding Z H, Xiao J L 2017 J. Electron. Mater. 46 439

    [13]

    Gu J, Liang J J 2005 Acta Phys. Sin. 54 5335 (in Chinese)[谷娟, 梁九卿 2005 54 5335]

    [14]

    Fotue A J, Kenfack S C, Tiotsop M, Issofa N, Tabue Djemmo M P, Wirngo A V, Fotsin H, Fai L C 2016 Eur. Phys. J. Plus. 131 75

    [15]

    Jacak L, Hawrylak P, Wojs A 1998 Quantum Dots (Berlin:Springer)

    [16]

    Adamowski J, Sobkowicz M, Szafran B, Bednarek S 2000 Phys. Rev. B 62 4234

    [17]

    Xie W F 2003 Solid State Commun. 127 401

    [18]

    Hai G Q, Peeters F M, Devreese J T 1993 Phys. Rev. B 47 10358

    [19]

    Liang S D, Chen C Y, Jiang S C, Lin D L 1996 Phys. Rev. B 53 15459

    [20]

    Xiao J L 2016 Int. J. Theor. Phys. 55 147

    [21]

    Khordad R, Goudarzi S, Bahramiyan H 2016 Indian J. Phys. 90 659

    [22]

    Wei X W, Qi B, Xiao J L 2015 J. Low Temp. Phys. 179 166

    [23]

    Miao X J, Sun Y, Xiao J L 2015 J. Korean Phys. Soc. 67 1197

    [24]

    Lee T D, Low F M, Pines S D 1953 Phys. Rev. 90 297

    [25]

    Landau L D, Pekar S I 1948 Zh. Eksp. Teor. Fiz. 18 419

    [26]

    Pekar S I, Deigen M F 1948 Zh. Eksp. Teor. Fiz. 18 481

    [27]

    Pekar S I 1954 Untersuchungen ber die Elektronentheorie der Kristalle (Berlin: Akademie Verlag)

    [28]

    Li W P, Yin J W, Yu Y F, Xiao J L, Wang Z W 2009 Int. J. Theor. Phys. 48 3339

    [29]

    Eerdunchaolu, Xiao J L 2007 J. Phys. Soc. Jpn. 76 044702

    [30]

    Li S S, Kong X J 1992 J. Phys. Condens. Matter 4 4815

    [31]

    Li S S, Xia J B 2007 J. Appl. Phys. 101 093716

    [32]

    Li S S, Xia J B 2007 Phys. Lett. A 366 120

  • [1] Li Yuan-He, Zhuo Zhi-Yao, Wang Jian, Huang Jun-Hui, Li Shu-Lun, Ni Hai-Qiao, Niu Zhi-Chuan, Dou Xiu-Ming, Sun Bao-Quan. Controlling exciton spontaneous emission of quantum dots by Au nanoparticles. Acta Physica Sinica, 2022, 71(6): 067804. doi: 10.7498/aps.71.20211863
    [2] Li Wei, Fu Jing, Yang Yun-Yun, He Ji-Zhou. Quantum dot refrigerator driven by photon. Acta Physica Sinica, 2019, 68(22): 220501. doi: 10.7498/aps.68.20191091
    [3] Zhou Liang-Liang, Wu Hong-Bo, Li Xue-Ming, Tang Li-Bin, Guo Wei, Liang Jing. ZrS2 quantum dots: Preparation, structure, and optical properties. Acta Physica Sinica, 2019, 68(14): 148501. doi: 10.7498/aps.68.20190680
    [4] He Yue-Di, Xu Zheng, Zhao Su-Ling, Liu Zhi-Min, Gao Song, Xu Xu-Rong. Electroluminescent energy transfer of hybrid quantum dotsdevice. Acta Physica Sinica, 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [5] Liu Zhi-Min, Zhao Su-Ling, Xu Zheng, Gao Song, Yang Yi-Fan. Luminescence characteristics of PVK doped with red-emitting quantum dots. Acta Physica Sinica, 2014, 63(9): 097302. doi: 10.7498/aps.63.097302
    [6] Zhang Pan-Jun, Sun Hui-Qing, Guo Zhi-You, Wang Du-Yang, Xie Xiao-Yu, Cai Jin-Xin, Zheng Huan, Xie Nan, Yang Bin. The spectrum-control of dual-wavelength LED with quantum dots planted in quantum wells. Acta Physica Sinica, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [7] Yao Zhi-Dong, Li Wei, Gao Xian-Long. Electronic properties on the point vacancy of armchair edged graphene quantum dots. Acta Physica Sinica, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [8] Zhang Xue-Gui, Wang Chong, Lu Zhi-Quan, Yang Jie, Li Liang, Yang Yu. Evolution of Ge/Si quantum dots self-assembledgrown by ion beam sputtering. Acta Physica Sinica, 2011, 60(9): 096101. doi: 10.7498/aps.60.096101
    [9] Zhou Yun-Qing, Kong Ling-Min, Wang Rui, Zhang Cun-Xi. Properties of pumping current under microwave field appliedto a quantum dot with over-dot tunneling. Acta Physica Sinica, 2011, 60(7): 077202. doi: 10.7498/aps.60.077202
    [10] Ju Xin, Guo Jian-Hong. Influence of interdot-coupling on differentialconductance for a triple quantum dot. Acta Physica Sinica, 2011, 60(5): 057302. doi: 10.7498/aps.60.057302
    [11] Feng Hao, Yu Zhong-Yuan, Liu Yu-Min, Lu Peng-Fei, Jia Bo-Yong, Yao Wen-Jie, Tian Hong-Da, Zhao Wei, Xu Zi-Huan. Theoretical study on strain compensation layer for growth of quantum dots. Acta Physica Sinica, 2010, 59(2): 765-770. doi: 10.7498/aps.59.765
    [12] Wang Yong-Long, Pan Hong-Zhe, Xu Ming, Chen Li, Sun Yuan-Yuan. Electronic structure and magnetism of single-layer trigonal graphene quantum dots with zigzag edges. Acta Physica Sinica, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [13] Yin Ji-Wen, Xiao Jing-Lin, Yu Yi-Fu, Wang Zi-Wu. The effect of Coulomb potential to the decoherence of the parabolic quantum dot qubit. Acta Physica Sinica, 2008, 57(5): 2695-2698. doi: 10.7498/aps.57.2695
    [14] Cai Cheng-Yu, Zhou Wang-Min. The strain distribution and equilibrium morphology of Ge/Si semiconductor quantum dot. Acta Physica Sinica, 2007, 56(8): 4841-4846. doi: 10.7498/aps.56.4841
    [15] Peng Hong-Ling, Han Qin, Yang Xiao-Hong, Niu Zhi-Chuan. Modulation response analysis of 1.3 μm quantum dot vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [16] Zheng Rui-Lun. Energy of excitons and probability distribution of electrons in columned composite system composed of quantum dots and quantum wires. Acta Physica Sinica, 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [17] Liu Shi-Rong, Huang Wei-Qi, Qin Zhao-Jian. Germanium quantum dots formed by oxidation of SiGe alloys. Acta Physica Sinica, 2006, 55(5): 2488-2491. doi: 10.7498/aps.55.2488
    [18] Cheng Cheng, Zhang Hang. A semiconductor nanocrystal PbSe quantum dot fiber amplifier. Acta Physica Sinica, 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
    [19] Deng Yu-Xiang, Yan Xiao-Hong, Tang Na-Si. Electron transport through a quantum dot ring. Acta Physica Sinica, 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
    [20] Hou Chun-Feng, Guo Ru-Hai. Energy structures of the elliptic cylindrical quantum dots. Acta Physica Sinica, 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
Metrics
  • Abstract views:  5671
  • PDF Downloads:  68
  • Cited By: 0
Publishing process
  • Received Date:  19 February 2018
  • Accepted Date:  15 May 2018
  • Published Online:  05 September 2018

/

返回文章
返回
Baidu
map