-
Over past decades, Fe-based amorphous and nanocrystalline alloys have aroused a popular research interest because of their ability to achieve high saturation magnetic flux density and low coercivity, but the mechanisms for modifying annealing-induced magnetic properties on an atomic scale in amorphous matrix due to structural relaxation has not been enough understood. In this work, we study the effects of pre-annealing time on local structural and magnetic properties of Fe80.8B10P8Cu1.2 amorphous alloy to explore the mechanisms for structural relaxation, particularly the evolution of chemical short range order. The alloy ribbons, both melt spun and annealed, are characterized by differential scanning calorimetry, X-ray diffractometry, Mössbauer spectroscopy and magnetometry. The magnetic hyperfine field distribution of Mössbauer spectrum is decomposed into four components adopting Gaussian distributions which represent FeB-, Fe3P-, Fe3B- and α-Fe-like atomic arrangements, respectively. The fluctuation of magnetic hyperfine field distribution indicates that accompanied with the aggregation of Fe atoms, the amorphous structures in some atomic regions tend to transform from Fe3B- to FeB-like chemical short-range order with the pre-annealing time increasing, but the amorphous matrix begins to crystallize when the pre-annealing time reaches 25 min. Before crystallization, the spin-exchange interaction between magnetic atoms is strengthened due to the increase of the number of Fe clusters and the structure compaction. Thus, saturation magnetic flux density increases gradually, then shows a drastic rise when there appear α-Fe grains in the amorphous matrix. Coercivity first declines to a minimum after 5 min pre-annealing and then increases drastically. This is attributed to the fact that excess free volume and residual stresses in the melt spun sample are released out during previous pre-annealing, which can weaken magnetic anisotropy significantly, while the subsequent pre-annealing destroys the homogeneity of amorphous matrix, resulting in the increase of magnetic anisotropy. In addition, the separation of Cu atoms from the first near-neighbor shell of Fe atoms and the obvious decrease in the Fe-P coordination number suggest the formation of CuP clusters, which can provide heterogeneous nucleation sites for α-Fe and contribute to the grain refinement. Therefore, through controlling the pre-annealing time, we successfully tune the content values of CuP and Fe clusters in the amorphous matrix to promote the precipitation of α-Fe and refine grains during crystallization. For Fe80.8B10P8Cu1.2 nanocrystalline alloy, an enhancement of soft magnetic properties is achieved by a pre-annealing at 660 K for 5-10 min followed by a subsequent annealing at 750 K for 5 min.
-
Keywords:
- structural relaxation /
- Mössbauer spectroscopy /
- chemical short-range order /
- soft magnetic properties
[1] Zhang Y N, Wang Y J, Kong L T, Li J F 2012 Acta Phys. Sin. 61 157502 (in Chinese)[张雅楠, 王有骏, 孔令体, 李金富2012 61 157502]
[2] Dai J, Wang Y G, Yang L, Xia G T, Zeng Q S, Lou H B 2017 Scripta Mater. 127 88
[3] Miao X F, Wang Y G 2012 J. Mater. Sci. 47 1745
[4] Jack R L, Dunleavy A J, Royall C 2014 Phys. Rev. Lett. 113 095703
[5] Yang X H, Ma X H, Li Q, Guo S F 2013 J. Alloys Compd. 554 446
[6] Xia G T, Wang Y G, Dai J, Dai Y D 2017 J. Alloys Compd. 690 281
[7] Makino A, Men H, Kubota T, Yubuta K, Inoue A 2009 J. Appl. Phys. 105 07A308
[8] Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379
[9] Babilas R, Kadziolka-Gawel M 2015 Acta Phys. Pol. A 127 573
[10] Gupta P, Gupta A, Shukla A, Ganguli T, Sinha A K, Principi G, Maddalena A 2011 J. Appl. Phys. 110 033537
[11] Srinivas M, Majumdar B, Bysakh S, Raja M M, Akhtar D 2014 J. Alloys Compd. 583 427
[12] Makino A, Men H, Kubota T, Yubuta K, Inoue A 2009 J. Appl. Phys. 105 07A308
[13] Urata A, Matsumoto H, Yoshida S, Makino A 2011 J. Alloy. Compd. 509S S431
[14] Chen F G, Wang Y G, Miao X F 2013 J. Alloys Compd. 549 26
[15] Gonser U, Ghafari M, Wagner H G 1978 J. Magn. Magn. Mater. 8 175
[16] Panissod P, Durand J, Budnick J I 1982 Nucl. Instrum. Methods 199 99
[17] Vincze I, Boudreaux D S, Tegze M 1979 Phys. Rev. B 19 4896
[18] Vincze I, Kemény T, Arajs S 1980 Phys. Rev. B 21 937
[19] Torrens-Serra J, Bruna P, Roth S, Rodriguez-Viejo J, Clavaguera-Mora M T 2009 J. Phys. D:Appl. Phys. 42 095010
[20] Cesnek M, Kubániová D, Kohout J, Křišt'an P,Štěpánková H, Závěta K, Lančok A,Štefánik M, Miglierini M 2016 Hyperfine Interact. 237 132
[21] Gupta A, Kane S N, Bhagat N, Kulik T 2003 J. Magn. Magn. Mater. 254-255 492
[22] Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817
[23] Makino A, Men H, Kubota T, Yubuta K, Inoue A 2009 Mater. Trans. A 50 204
[24] Wang Y C, Takeuchi A, Makino A, Liang Y Y, Kawazoe Y 2014 J. Appl. Phys. 115 173910
[25] Makino A 2012 IEEE Trans. Magn. 48 1331
[26] Ohta M, Yoshizawa Y 2008 J. Appl. Phys. 103 07E722
[27] Herzer G 1990 IEEE Trans. Magn. 26 1397
-
[1] Zhang Y N, Wang Y J, Kong L T, Li J F 2012 Acta Phys. Sin. 61 157502 (in Chinese)[张雅楠, 王有骏, 孔令体, 李金富2012 61 157502]
[2] Dai J, Wang Y G, Yang L, Xia G T, Zeng Q S, Lou H B 2017 Scripta Mater. 127 88
[3] Miao X F, Wang Y G 2012 J. Mater. Sci. 47 1745
[4] Jack R L, Dunleavy A J, Royall C 2014 Phys. Rev. Lett. 113 095703
[5] Yang X H, Ma X H, Li Q, Guo S F 2013 J. Alloys Compd. 554 446
[6] Xia G T, Wang Y G, Dai J, Dai Y D 2017 J. Alloys Compd. 690 281
[7] Makino A, Men H, Kubota T, Yubuta K, Inoue A 2009 J. Appl. Phys. 105 07A308
[8] Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379
[9] Babilas R, Kadziolka-Gawel M 2015 Acta Phys. Pol. A 127 573
[10] Gupta P, Gupta A, Shukla A, Ganguli T, Sinha A K, Principi G, Maddalena A 2011 J. Appl. Phys. 110 033537
[11] Srinivas M, Majumdar B, Bysakh S, Raja M M, Akhtar D 2014 J. Alloys Compd. 583 427
[12] Makino A, Men H, Kubota T, Yubuta K, Inoue A 2009 J. Appl. Phys. 105 07A308
[13] Urata A, Matsumoto H, Yoshida S, Makino A 2011 J. Alloy. Compd. 509S S431
[14] Chen F G, Wang Y G, Miao X F 2013 J. Alloys Compd. 549 26
[15] Gonser U, Ghafari M, Wagner H G 1978 J. Magn. Magn. Mater. 8 175
[16] Panissod P, Durand J, Budnick J I 1982 Nucl. Instrum. Methods 199 99
[17] Vincze I, Boudreaux D S, Tegze M 1979 Phys. Rev. B 19 4896
[18] Vincze I, Kemény T, Arajs S 1980 Phys. Rev. B 21 937
[19] Torrens-Serra J, Bruna P, Roth S, Rodriguez-Viejo J, Clavaguera-Mora M T 2009 J. Phys. D:Appl. Phys. 42 095010
[20] Cesnek M, Kubániová D, Kohout J, Křišt'an P,Štěpánková H, Závěta K, Lančok A,Štefánik M, Miglierini M 2016 Hyperfine Interact. 237 132
[21] Gupta A, Kane S N, Bhagat N, Kulik T 2003 J. Magn. Magn. Mater. 254-255 492
[22] Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817
[23] Makino A, Men H, Kubota T, Yubuta K, Inoue A 2009 Mater. Trans. A 50 204
[24] Wang Y C, Takeuchi A, Makino A, Liang Y Y, Kawazoe Y 2014 J. Appl. Phys. 115 173910
[25] Makino A 2012 IEEE Trans. Magn. 48 1331
[26] Ohta M, Yoshizawa Y 2008 J. Appl. Phys. 103 07E722
[27] Herzer G 1990 IEEE Trans. Magn. 26 1397
Catalog
Metrics
- Abstract views: 5759
- PDF Downloads: 194
- Cited By: 0