Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

E(2) gauge theory model of effective gravitational theory at large scale

Wei Wen-Ye Shen Jia-Yin Wu Yi-Wei Yang Li-Xiang Xue Xun Yuan Tzu-Chiang

Citation:

E(2) gauge theory model of effective gravitational theory at large scale

Wei Wen-Ye, Shen Jia-Yin, Wu Yi-Wei, Yang Li-Xiang, Xue Xun, Yuan Tzu-Chiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • At the cosmological scale, there exist many anisotropic anomalies in the low-l multipoles of the CMB angular power spectrum. Especially, the normals to the octopole and quadrupole planes are aligned with the direction of the cosmological dipole at a level inconsistent with Gaussian random. The inconsistency indicates that the anomalies may not be boost effect from the CMB rest frame to the peculiar frame. It hints us that the boost invariance might be violated on a cosmological scale. There are some discrepancies between the astronomical and cosmological observations, and the predictions are solely based on general relativity and the standard model for elementary particle physics. The solutions are the introduction of dark matter and dark energy. However, all the experiments aiming at finding dark matter particles give negative result and it is still a mystery:what the dark energy is comprised of. We suppose that the Lorentz symmetry begins to be violated partly from the scale of galaxy and utilize the very special relativity symmetry group E(2) as an example to illustrate the Lorentz violation effect on the large-scale effective gravity. A local E(2) but Lorentz invariant gauge theory can be constructed based on the equivalence principle and the gauge principle. To realize the E(2) symmetry, the closure requirement of Maurer-Cartan eqnarray on E(2) algebra needs to be satisfied by postulating constraint conditions among the components of the Lorentz connection. The local Lorentz invariant gauge theory with a Hilbert-Einstein action is a theory with torsion in general case. However in the case of scalar matter source, the theory is exactly the theory of general relativity with Levi-Civita connection and zero torsion. In the E(2) gauge theory case, the closure requirement of Maurer-Cartan eqnarray for E(2) algebra postulates 12 constraint eqnarrays among the components of the Lorentz connection and the eqnarrays of motion for connection reduce the number of independent components of connection to 12. The eqnarrays of motion for the tetrad field do not contain only the involved tetrad field components nor these relevant independent components. So the whole number of variables needed to be solved is 12 more than that in general relativity while there are 12 more eqnarrays in the meantime. The torsion or the contortion field of the E(2) gauge theory is non-trivial even in the case of scalar matter source distribution. Decompose the connection into Levi-Civita one and the contortion part and rewrite the eqnarrays for tetrad field in the formalism of general relativity, then there will appear an effective energy-momentum tensor contributed by the contortion distribution, in addition to the ordinary matter source distribution even for the case of scalar matter source. We expect it to contribute at least part of the dark matter effect. We also examine the holding of the first and second Bianchi identities induced by Jacobi identity of the E(2) gauge theory. The approach of our modified gravity is different from other approach of modified gravity in the sense that we construct the modified gravity by modifying the spacetime symmetry on a large scale and the emergence of effective energy-momentum tensor caused by Lorentz violation effect is due to a purely large scale effect.
      Corresponding author: Xue Xun, xxue@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11435005).
    [1]

    Zwicky F 1937 Astrophys. J. 86 217

    [2]

    Rubin V C, Ford Jr W K, Thonnard N 1980 Astrophys. J. 238 471

    [3]

    Shojai F, Shojai A 2014 General Relat. Gravit. 46 1704

    [4]

    Moffat J W 2006 J. Cosmol. Astropart. Phys. 03 004

    [5]

    Bekenstein J D 2004 Phys. Rev. D 70 083509

    [6]

    Agnese R, Anderson A J, Asai M, et al. 2014 Phys. Rev. Lett. 112 241302

    [7]

    Kim S C, Bhang H, Choi J H, et al. 2012 Phys. Rev. Lett. 108 181301

    [8]

    Geringer-Sameth A, Koushiappas S M 2011 Phys. Rev. Lett. 107 241303

    [9]

    Ji X D 2017 Nature 542 172

    [10]

    Akerib D S, Akerlof C W, Akimov D Y, et al. 2017 Phys. Rev. Lett. 118 021303

    [11]

    Weinberg S 2008 Cosmology (New York:Oxford University Press) pp1-6

    [12]

    Aghanim N, Armitage-Caplan C, Arnaud M, et al. 2014 Astron. Astrophys. 571 A27

    [13]

    Ade P A R, Aghanim N, Armitage-Caplan C, et al. 2014 Astron. Astrophys. 571 A20

    [14]

    Ade P A R, Aghanim N, Akrami Y, et al. 2016 Astron. Astrophys. 594 A16

    [15]

    Coleman S R, Glashow S L 1999 Phys. Rev. D 59 116008

    [16]

    Colladay D, Kostelecky V A 1998 Phys. Rev. D 58 116002

    [17]

    Li X, Chang Z 2013 Chin. Phys. C 37 123103

    [18]

    Wu Y W, Xue X, Yang L X, Yuan T 2016 Chin. Sci. Bull. 10 1360

    [19]

    Wu Y W, Xue X, Yang L X, Yuan T 2015 arXiv: 151000814v3

    [20]

    Wu Y W, Xue X 2016 J. East China Normal Univ. 10 3969

    [21]

    Cohen A G, Glashow S L 2006 Phys. Rev. Lett. 97 021601

    [22]

    Micheletti S, Abdalla E, Wang B 2009 Phys. Rev. D 79 123506

    [23]

    He J H, Wang B 2011 Phys. Rev. D 83 063515

  • [1]

    Zwicky F 1937 Astrophys. J. 86 217

    [2]

    Rubin V C, Ford Jr W K, Thonnard N 1980 Astrophys. J. 238 471

    [3]

    Shojai F, Shojai A 2014 General Relat. Gravit. 46 1704

    [4]

    Moffat J W 2006 J. Cosmol. Astropart. Phys. 03 004

    [5]

    Bekenstein J D 2004 Phys. Rev. D 70 083509

    [6]

    Agnese R, Anderson A J, Asai M, et al. 2014 Phys. Rev. Lett. 112 241302

    [7]

    Kim S C, Bhang H, Choi J H, et al. 2012 Phys. Rev. Lett. 108 181301

    [8]

    Geringer-Sameth A, Koushiappas S M 2011 Phys. Rev. Lett. 107 241303

    [9]

    Ji X D 2017 Nature 542 172

    [10]

    Akerib D S, Akerlof C W, Akimov D Y, et al. 2017 Phys. Rev. Lett. 118 021303

    [11]

    Weinberg S 2008 Cosmology (New York:Oxford University Press) pp1-6

    [12]

    Aghanim N, Armitage-Caplan C, Arnaud M, et al. 2014 Astron. Astrophys. 571 A27

    [13]

    Ade P A R, Aghanim N, Armitage-Caplan C, et al. 2014 Astron. Astrophys. 571 A20

    [14]

    Ade P A R, Aghanim N, Akrami Y, et al. 2016 Astron. Astrophys. 594 A16

    [15]

    Coleman S R, Glashow S L 1999 Phys. Rev. D 59 116008

    [16]

    Colladay D, Kostelecky V A 1998 Phys. Rev. D 58 116002

    [17]

    Li X, Chang Z 2013 Chin. Phys. C 37 123103

    [18]

    Wu Y W, Xue X, Yang L X, Yuan T 2016 Chin. Sci. Bull. 10 1360

    [19]

    Wu Y W, Xue X, Yang L X, Yuan T 2015 arXiv: 151000814v3

    [20]

    Wu Y W, Xue X 2016 J. East China Normal Univ. 10 3969

    [21]

    Cohen A G, Glashow S L 2006 Phys. Rev. Lett. 97 021601

    [22]

    Micheletti S, Abdalla E, Wang B 2009 Phys. Rev. D 79 123506

    [23]

    He J H, Wang B 2011 Phys. Rev. D 83 063515

  • [1] Gao Jian-Hua, Sheng Xin-Li, Wang Qun, Zhuang Peng-Fei. Relativistic spin transport theory for spin-1/2 fermions. Acta Physica Sinica, 2023, 72(11): 112501. doi: 10.7498/aps.72.20222470
    [2] Wang En-Quan, Chen Hao, Yang Yi, Long Zheng-Wen, Hassanabadi Hassan. Generalized Klein-Gordon oscillator in Lorentz symmetry violation framework. Acta Physica Sinica, 2022, 71(6): 060301. doi: 10.7498/aps.71.20211733
    [3] Song Tong-Tong, Luo Jie, Lai Yun. Pseudo-local effect medium theory. Acta Physica Sinica, 2020, 69(15): 154203. doi: 10.7498/aps.69.20200196
    [4] Pu Jin, Yang Shu-Zheng, Lin Kai. Lorentz-violating theory and tunneling radiation characteristics of Dirac particles in curved spacetime of Vaidya black hole. Acta Physica Sinica, 2019, 68(19): 190401. doi: 10.7498/aps.68.20190437
    [5] Zhai Han-Yu, Shen Jia-Yin, Xue Xun. Effective quintessence from string landscape. Acta Physica Sinica, 2019, 68(13): 139501. doi: 10.7498/aps.68.20190282
    [6] Dong Cheng-Wei. Periodic orbits of diffusionless Lorenz system. Acta Physica Sinica, 2018, 67(24): 240501. doi: 10.7498/aps.67.20181581
    [7] Chen Yao-Hui, Dong Xiang-Rui, Chen Zhi-Hua, Zhang Hui, Li Bao-Ming, Fan Bao-Chun. Control of flow around hydrofoil using the Lorentz force. Acta Physica Sinica, 2014, 63(3): 034701. doi: 10.7498/aps.63.034701
    [8] Xu Yan, Fan Wei, Ji Yan-Jun, Song Ren-Gang, Chen Bing, Zhao Zhen-Hua, Chen Da. Effective field theory approach to the weakly interacting bose gas. Acta Physica Sinica, 2014, 63(4): 040501. doi: 10.7498/aps.63.040501
    [9] Zhao Jian-Li, Wang Jing, Wang Hui. The study of finite-time stability active control method for Lorenz-Haken laser chaotic system. Acta Physica Sinica, 2012, 61(11): 110209. doi: 10.7498/aps.61.110209
    [10] Zhou Xian-Chun, Lin Wan-Tao, Lin Yi-Hua, Yao Jing-Sun, Mo Jia-Qi. A method of solving a class of disturbed Lorenz system. Acta Physica Sinica, 2011, 60(11): 110207. doi: 10.7498/aps.60.110207
    [11] Yu Zhi-Qiang, Xie Quan, Xiao Qing-Quan. Effects of the spin-orbit coupling on X-ray spectrum in special relativity. Acta Physica Sinica, 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [12] Zhou Guo-Quan. Study on the propagation properties of Lorentz beam. Acta Physica Sinica, 2008, 57(6): 3494-3498. doi: 10.7498/aps.57.3494
    [13] Guo Han-Ying, Huang Chao-Guang, Tian Yu, Xu Zhan, Zhou Bin. Beltrami-de Sitter spacetime and de Sitter invariant special relativity. Acta Physica Sinica, 2005, 54(6): 2494-2504. doi: 10.7498/aps.54.2494
    [14] WANG ZHI-HE, CAO XIAO-WEN, CHEN JING-LIN, LI KE-BIN. EFFECTIVE PINNING POTENTIAL IN EPITAXIAL YBa2Cu3O7-δ THIN FILM. Acta Physica Sinica, 1998, 47(10): 1720-1726. doi: 10.7498/aps.47.1720
    [15] ZENG GUI-HUA, YU WEI, SHEN BAI-FEI, XU ZHI-ZHAN. HIGH-ORDER RELATIVISTIC GENERATION BY INTENSE LASER PULSE. Acta Physica Sinica, 1996, 45(9): 1487-1491. doi: 10.7498/aps.45.1487
    [16] Qian Qing, Liu Qiang, Xu Xiang-dong, Tian Jia-he, Chen Xue-jun. THEORY OF (e, 2e) COLLISIONS IN COMPLEX ATOMS. Acta Physica Sinica, 1992, 41(2): 233-237. doi: 10.7498/aps.41.233
    [17] ZHANG YAO-ZHONG. EFFECTIVE LAGRANGIAN AND MASS GENERATION OF THE CHIRAL QCD2 MODEL. Acta Physica Sinica, 1987, 36(11): 1513-1518. doi: 10.7498/aps.36.1513
    [18] LI YU, XIMEN JI-YE. ON THE RELATIVISTIC ABERRATION THEORY OF A COMBINED FOCUSING-DEFLECTION SYSTEM WITH MULTI-STAGE DEFLECTORS. Acta Physica Sinica, 1982, 31(5): 604-614. doi: 10.7498/aps.31.604
    [19] ZHAO BAO-HENG. PHOTON-PHOTON SCATTERING IN SPONTANEOUSLY BROKEN GAUGE THEORIES. Acta Physica Sinica, 1976, 25(1): 53-57. doi: 10.7498/aps.25.53
    [20] HSIN P. SOH. NOTE ON VELOCITY TRANSFORMATIONS IN SPECIAL RELATIVITY.. Acta Physica Sinica, 1951, 8(3): 235-238. doi: 10.7498/aps.8.235
Metrics
  • Abstract views:  6091
  • PDF Downloads:  243
  • Cited By: 0
Publishing process
  • Received Date:  04 February 2017
  • Accepted Date:  06 April 2017
  • Published Online:  05 July 2017

/

返回文章
返回
Baidu
map