Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vibrational resonance in a periodic potential system with stable noise

Jiao Shang-Bin Sun Di Liu Ding Xie Guo Wu Ya-Li Zhang Qing

Citation:

Vibrational resonance in a periodic potential system with stable noise

Jiao Shang-Bin, Sun Di, Liu Ding, Xie Guo, Wu Ya-Li, Zhang Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A periodic potential system excited by multi-low frequency weak signals, the high frequency signal and additive stable noise is constructed. Based on this model, the vibrational resonance phenomenon under stable noise is investigated by taking the mean signal-noise-ratio gain (MSNRI) of output as a performance index. Then the influences of stability index (0 2), the skewness parameter (-1 1) of stable noise, the amplification factor D and the high frequency signal amplitude B, and frequency on the resonant output effect are explored. The results show that under the different distributions of stable noise, the multi-low frequency weak signals detection can be realized by adjusting the high frequency signal parameter B or to induce vibrational resonance within a certain range. When (or ) is given different values, the curve of MSNRI-B has multiple peaks with the increase of B for a certain frequency , and the values of MSNRI corresponding to peaks of the curve of MSNRI-B are equal. So the intervals of B which can induce vibrational resonances are multiple, and the multiple resonance phenomenon turns periodic with the increase of B. Similarly, the curve of MSNRI- also has multiple peaks with the increase of for a certain amplitude B, so the intervals of which can induce vibrational resonances are also multiple. The difference is that the multiple resonance phenomenon becomes irregular with the increase of . Besides, the resonance intervals of B and do not change with nor . Under the different values of amplitude factor D, the resonance intervals of B (or ) do not change with the increase of D, indicating that only the energy of the high frequency signal transfers toward the signals to be measured, and the energy of stable noise does not transfer toward the signals to be measured. Besides, when B and are fixed, it can still be realized to detect the weak signal with the increase of D, which shows that the weak signal detection method based on vibrational resonance can overcome the shortcoming that noise intensity in industrial sites cannot be regulated and controlled. The results provide a new method of detecting the weak signal, and have potential application value in signal processing.
      Corresponding author: Jiao Shang-Bin, jsbzq@163.com
    • Funds: Project supported by the Key Program of National Natural Science Foundation of China (Grant No. 61533014) and the National Natural Science Foundation of China (Grant Nos. U1534208, 61503299).
    [1]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A: Math. Gen. 14 453

    [2]

    Chizhevsky V N, Smeu E, Giacomelli G 2008 U. P. B. Bull. Ser. A 70 31

    [3]

    Yang J H 2011 Ph. D. Dissertation (Nanjing: University of Aeronautics and Astronautics) (in Chinese) [杨建华 2010 博士学位论文 (南京: 航天航空大学)]

    [4]

    Landa P S, McClintock P V E 2000 J. Phys. A: Math. Gen. 33 L433

    [5]

    Gitterman M 2001 J. Phys. A: Math. Gen. 34 L355

    [6]

    Baltanás J P, López L, Blechman I I, Landa P S 2003 Phys. Rev. E 67 066119

    [7]

    Chizhevsky V N 2007 Int. J. Bifurcat. Chaos 18 1767

    [8]

    Lin M, Huang Y M 2007 Vib. Shock 12 151 (in Chinese) [林敏, 黄咏梅 2007 振动与冲击 12 151]

    [9]

    Lin M, Huang Y M 2007 Acta Phys. Sin. 56 6713 (in Chinese) [林敏, 黄咏梅 2007 56 6713]

    [10]

    Yang J H, Liu X B 2010 J. Phys. A 43 122001

    [11]

    Yang J H, Liu X B 2012 Acta Phys. Sin. 61 010505 (in Chinese) [杨建华, 刘先斌 2012 61 010505]

    [12]

    Yang X N, Yang Y F 2015 Acta Phys. Sin. 64 070507 (in Chinese) [杨秀妮, 杨云峰 2015 64 070507]

    [13]

    Blekhman I I, Landa P S 2004 Non-Linear Mech. 39 421

    [14]

    Ullner E, Zaikin A, García-Ojalvo J 2003 Phys. Lett. A 312 348

    [15]

    Deng B, Wang J, Wei X 2009 Chaos 19 013117

    [16]

    Yu H T, Guo X M, Wang J, Deng B, Wei X L 2015 J. Phys. A 436 170

    [17]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuan M A 2009 Chaos 19 043128

    [18]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuan M A 2009 Phys. Rev. E 80 046608

    [19]

    Yang J H, Liu H G, Cheng G 2013 Acta Phys. Sin. 62 180503

    [20]

    Mbong T L M D, Siewe M S, Tchawoua C 2016 Mech. Res. Commun. 78 13

    [21]

    Chizhevsky V N, Smeu E, Giacomelli G 2003 Phys. Rev. Lett. 91 220602

    [22]

    Chizhevsky V N 2014 Phys. Rev. E 90 042924

    [23]

    Zaikin A A, Lopez L, Baltanas J P, Kurths J, Sanjuan M A F 2002 Phys. Rev. E 66 011106

    [24]

    Casado-Pascual J, Baltanas J P 2004 Phys. Rev. E 69 059902

    [25]

    Chizhevsky V N, Giacomelli G 2008 Phys. Rev. E 77 051126

    [26]

    Yang J H, Liu X B 2010 Chaos 20 033124

    [27]

    Qiu T S, Zhang X X, Li X B, Sun Y M 2004 Statistical Signal Processing—Non-Gaussian Signal Processing and its Applications (Beijing: Publishing House of Electronics Industry) p140 (in Chinese) [邱天爽, 张旭秀, 李小兵, 孙永梅 2004 统计信号处理——非高斯信号处理及其应用(北京: 电子工业出版社) 第140页]

    [28]

    Zhang G L, L X L, Kang Y M 2012 Acta Phys. Sin. 61 040501 (in Chinese) [张广丽, 吕希路, 康艳梅 2012 61 040501]

    [29]

    Liang Y J, Chen W 2013 Signal Process. 93 242

    [30]

    Jiao S B, Ren C, Huang W C, Liang Y M 2013 Acta Phys. Sin. 62 210501 (in Chinese) [焦尚彬, 任超, 黄伟超, 梁炎明 2013 62 210501]

    [31]

    Zeng L Z, Bao R H, Xu B H 2007 J. Phys. A: Math. Theor. 40 7175

    [32]

    Fogedby H C 1998 Phys. Rev. E 58 1690

    [33]

    Zeng L Z, Xu B H 2010 J. Phys. A: Statist. Mech. Appl. 389 5128

    [34]

    Zhang W Y, Wang Z L, Zhang W D 2009 Control Engineering of China 16 638 (in Chinese) [张文英, 王自力, 张卫东 2009 控制工程 16 638]

    [35]

    Weron R 1996 Statist. Prob. Lett. 28 165

    [36]

    Wan P, Zhan Y J, Li X C 2011 Acta Phys. Sin. 60 040502 (in Chinese) [万频, 詹宜巨, 李学聪 2011 60 040502]

  • [1]

    Benzi R, Sutera A, Vulpiani A 1981 J. Phys. A: Math. Gen. 14 453

    [2]

    Chizhevsky V N, Smeu E, Giacomelli G 2008 U. P. B. Bull. Ser. A 70 31

    [3]

    Yang J H 2011 Ph. D. Dissertation (Nanjing: University of Aeronautics and Astronautics) (in Chinese) [杨建华 2010 博士学位论文 (南京: 航天航空大学)]

    [4]

    Landa P S, McClintock P V E 2000 J. Phys. A: Math. Gen. 33 L433

    [5]

    Gitterman M 2001 J. Phys. A: Math. Gen. 34 L355

    [6]

    Baltanás J P, López L, Blechman I I, Landa P S 2003 Phys. Rev. E 67 066119

    [7]

    Chizhevsky V N 2007 Int. J. Bifurcat. Chaos 18 1767

    [8]

    Lin M, Huang Y M 2007 Vib. Shock 12 151 (in Chinese) [林敏, 黄咏梅 2007 振动与冲击 12 151]

    [9]

    Lin M, Huang Y M 2007 Acta Phys. Sin. 56 6713 (in Chinese) [林敏, 黄咏梅 2007 56 6713]

    [10]

    Yang J H, Liu X B 2010 J. Phys. A 43 122001

    [11]

    Yang J H, Liu X B 2012 Acta Phys. Sin. 61 010505 (in Chinese) [杨建华, 刘先斌 2012 61 010505]

    [12]

    Yang X N, Yang Y F 2015 Acta Phys. Sin. 64 070507 (in Chinese) [杨秀妮, 杨云峰 2015 64 070507]

    [13]

    Blekhman I I, Landa P S 2004 Non-Linear Mech. 39 421

    [14]

    Ullner E, Zaikin A, García-Ojalvo J 2003 Phys. Lett. A 312 348

    [15]

    Deng B, Wang J, Wei X 2009 Chaos 19 013117

    [16]

    Yu H T, Guo X M, Wang J, Deng B, Wei X L 2015 J. Phys. A 436 170

    [17]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuan M A 2009 Chaos 19 043128

    [18]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuan M A 2009 Phys. Rev. E 80 046608

    [19]

    Yang J H, Liu H G, Cheng G 2013 Acta Phys. Sin. 62 180503

    [20]

    Mbong T L M D, Siewe M S, Tchawoua C 2016 Mech. Res. Commun. 78 13

    [21]

    Chizhevsky V N, Smeu E, Giacomelli G 2003 Phys. Rev. Lett. 91 220602

    [22]

    Chizhevsky V N 2014 Phys. Rev. E 90 042924

    [23]

    Zaikin A A, Lopez L, Baltanas J P, Kurths J, Sanjuan M A F 2002 Phys. Rev. E 66 011106

    [24]

    Casado-Pascual J, Baltanas J P 2004 Phys. Rev. E 69 059902

    [25]

    Chizhevsky V N, Giacomelli G 2008 Phys. Rev. E 77 051126

    [26]

    Yang J H, Liu X B 2010 Chaos 20 033124

    [27]

    Qiu T S, Zhang X X, Li X B, Sun Y M 2004 Statistical Signal Processing—Non-Gaussian Signal Processing and its Applications (Beijing: Publishing House of Electronics Industry) p140 (in Chinese) [邱天爽, 张旭秀, 李小兵, 孙永梅 2004 统计信号处理——非高斯信号处理及其应用(北京: 电子工业出版社) 第140页]

    [28]

    Zhang G L, L X L, Kang Y M 2012 Acta Phys. Sin. 61 040501 (in Chinese) [张广丽, 吕希路, 康艳梅 2012 61 040501]

    [29]

    Liang Y J, Chen W 2013 Signal Process. 93 242

    [30]

    Jiao S B, Ren C, Huang W C, Liang Y M 2013 Acta Phys. Sin. 62 210501 (in Chinese) [焦尚彬, 任超, 黄伟超, 梁炎明 2013 62 210501]

    [31]

    Zeng L Z, Bao R H, Xu B H 2007 J. Phys. A: Math. Theor. 40 7175

    [32]

    Fogedby H C 1998 Phys. Rev. E 58 1690

    [33]

    Zeng L Z, Xu B H 2010 J. Phys. A: Statist. Mech. Appl. 389 5128

    [34]

    Zhang W Y, Wang Z L, Zhang W D 2009 Control Engineering of China 16 638 (in Chinese) [张文英, 王自力, 张卫东 2009 控制工程 16 638]

    [35]

    Weron R 1996 Statist. Prob. Lett. 28 165

    [36]

    Wan P, Zhan Y J, Li X C 2011 Acta Phys. Sin. 60 040502 (in Chinese) [万频, 詹宜巨, 李学聪 2011 60 040502]

  • [1] Xu Peng-Fei, Gong Xu-Lu, Li Yi-Wei, Jin Yan-Fei. Stochastic resonance in periodic potential system with memory damping function. Acta Physica Sinica, 2022, 71(8): 080501. doi: 10.7498/aps.71.20211732
    [2] Yang Jian-Hua, Ma Qiang, Wu Cheng-Jin, Liu Hou-Guang. A periodic vibrational resonance in the fractional-order bistable system. Acta Physica Sinica, 2018, 67(5): 054501. doi: 10.7498/aps.67.20172046
    [3] Sun Run-Zhi, Wang Zhi-Zhong, Wang Mao-Sheng, Zhang Ji-Qian. Vibrational resonance and nonlinear vibrational resonance in square-lattice neural system. Acta Physica Sinica, 2015, 64(11): 110501. doi: 10.7498/aps.64.110501
    [4] Zhang Gang, Hu Tao, Zhang Tian-Qi. Characteristic analysis of power function type monostable stochastic resonance with Levy noise. Acta Physica Sinica, 2015, 64(22): 220502. doi: 10.7498/aps.64.220502
    [5] Yang Xiu-Ni, Yang Yun-Feng. Vibrational resonance in an asymmetric bistable system with time-delay feedback. Acta Physica Sinica, 2015, 64(7): 070507. doi: 10.7498/aps.64.070507
    [6] Ma Zheng-Mu, Jin Yan-Fei. Stochastic resonance in periodic potential driven by dichotomous noise. Acta Physica Sinica, 2015, 64(24): 240502. doi: 10.7498/aps.64.240502
    [7] Fan Jian, Zhao Wen-Li, Zhang Ming-Lu, Tan Run-Hua, Wang Wan-Qiang. Nonlinear dynamics of stochastic resonance and its application in the method of weak signal detection. Acta Physica Sinica, 2014, 63(11): 110506. doi: 10.7498/aps.63.110506
    [8] Jiao Shang-Bin, Ren Chao, Li Peng-Hua, Zhang Qing, Xie Guo. Stochastic resonance in an overdamped monostable system with multiplicative and additive α stable noise. Acta Physica Sinica, 2014, 63(7): 070501. doi: 10.7498/aps.63.070501
    [9] Zhang Lu, Xie Tian-Ting, Luo Mao-Kang. Vibrational resonance in a Duffing system with fractional-order external and intrinsic dampings driven by the two-frequency signals. Acta Physica Sinica, 2014, 63(1): 010506. doi: 10.7498/aps.63.010506
    [10] Zhou Xue-Xue, Lai Li, Luo Mao-Kang. A new detecting method for periodic weak signals based on fractional order stopping oscillation system. Acta Physica Sinica, 2013, 62(9): 090501. doi: 10.7498/aps.62.090501
    [11] Yang Jian-Hua, Liu Hou-Guang, Cheng Gang. The pitchfork bifurcation and vibrational resonance in a quintic oscillator. Acta Physica Sinica, 2013, 62(18): 180503. doi: 10.7498/aps.62.180503
    [12] Jiao Shang-Bin, Ren Chao, Huang Wei-Chao, Liang Yan-Ming. Parameter-induced stochastic resonance in multi-frequency weak signal detection with stable noise. Acta Physica Sinica, 2013, 62(21): 210501. doi: 10.7498/aps.62.210501
    [13] Wang Meng-Jiao, Zeng Yi-Cheng, Xie Chang-Qing, Zhu Gao-Feng, Tang Shu-Hong. Application of Chen's system to detecting weak harmonic signals. Acta Physica Sinica, 2012, 61(18): 180502. doi: 10.7498/aps.61.180502
    [14] Gao Shi-Long, Zhong Su-Chuan, Wei Kun, Ma Hong. Weak signal detection based on chaos and stochastic resonance. Acta Physica Sinica, 2012, 61(18): 180501. doi: 10.7498/aps.61.180501
    [15] Yang Jian-Hua, Liu Xian-Bin. Analysis of periodic vibrational resonance induced by linear time delay feedback. Acta Physica Sinica, 2012, 61(1): 010505. doi: 10.7498/aps.61.010505
    [16] Wan Pin, Zhan Yi-Ju, Li Xue-Cong, Wang Yong-Hua. Numerical research of signal-to-noise ratio gain on a monostable stochastic resonance. Acta Physica Sinica, 2011, 60(4): 040502. doi: 10.7498/aps.60.040502
    [17] Li Yue, Xu Kai, Yang Bao-Jun, Yuan Ye, Wu Ning. Analysis of the geometric characteristic quantity of the periodic solutions of the chaotic oscillator system and the quantitative detection of weak periodic signal. Acta Physica Sinica, 2008, 57(6): 3353-3358. doi: 10.7498/aps.57.3353
    [18] Chen Fang, Zeng Jian-Hua, Zhou Jian-Ying. Small signal gain characteristics of periodically arranged resonant amplifying media. Acta Physica Sinica, 2007, 56(7): 4175-4179. doi: 10.7498/aps.56.4175
    [19] Lin Min, Huang Yong-Mei. Stochastic resonance control based on vibration resonance. Acta Physica Sinica, 2007, 56(11): 6173-6177. doi: 10.7498/aps.56.6173
    [20] Lin Min, Huang Yong-Mei. Modulation and demodulation for detecting weak periodic signal of stochastic resonance. Acta Physica Sinica, 2006, 55(7): 3277-3282. doi: 10.7498/aps.55.3277
Metrics
  • Abstract views:  5895
  • PDF Downloads:  243
  • Cited By: 0
Publishing process
  • Received Date:  14 January 2017
  • Accepted Date:  18 March 2017
  • Published Online:  05 May 2017

/

返回文章
返回
Baidu
map