Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vibrational resonance in an asymmetric bistable system with time-delay feedback

Yang Xiu-Ni Yang Yun-Feng

Citation:

Vibrational resonance in an asymmetric bistable system with time-delay feedback

Yang Xiu-Ni, Yang Yun-Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Vibrational resonance is a resonant dynamics induced by a high-frequency periodic force at the low-frequency of the input periodic signal, and the input periodic signal is enhanced by a high-frequency signal. In this paper, a linear time-delayed feedback bistable system with an asymmetric double-well potential driven by both low-frequency and high-frequency periodic forces is constructed. Based on this model, the vibrational resonance phenomenon is investigated. Making use of the method of separating slow motion from fast motion under the conditions of Ω>>ω (Ω is the frequency of the high-frequency signal and ω is the one of the low-frequency signal), equivalent equations to the slow motion and the fast motion are obtained. Neglecting the nonlinear factors, the analytical expression of the response amplitude Q can be obtained, and the effects of the time-delay parameter α and the asymmetric parameter r on the vibrational resonance are discussed in detail. Moreover, the locations at which the vibrational resonance occurs, are obtained by means of solving the condition for a resonance to occur. A major consequence of time-delayed feedback is that it gives rise to a periodic or quasiperiodic pattern of vibrational resonance profile with respect to the time-delayed parameter, i.e. in Q-α plot, α can induce the Q which is periodic with the periods of the high-frequency signal and the low-frequency signal. The locations at which the vibrational resonance occurs are not changed by the asymmetric parameter r. However, the resonance amplitude is enhanced with increasing r. Specifically, the resonance amplitude is greatly enhanced when r>0.15. On the other hand, in the symmetric case (r=0), BVR at which the vibrational resonance occurs is periodic with the periods of high-frequency signal and low-frequency signal as α increases, which is shown in BVR-α (B is the amplitude of the high-frequency signal) plot. In Q-Ω plot, Q is presented by multi-resonance at the small values of B and Ω, but Q tends to a fixed value at the small values of B and the large values of Ω. We believe that the above theoretical observations will stimulate the experimental study of vibrational resonance in nonlinear oscillators and electronic circuits with time-delayed feedback.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.71103143), and the Natural Science New Star of Science and Technologies Research Plan in Shaanxi Province of China (Grant No.2013KJXX-40).
    [1]

    Landa P, McClintock P 2000 J. Phys. A 33 L433

    [2]

    Gitterman M 2001 J. Phys. A 34 L355

    [3]

    Zaikin A A, López L, Baltanás J P, Kurths J, Sanjuán M A F 2002 Phys. Rev. E 66 011106

    [4]

    Baltanás J P, López L, Blechman I I, Landa P S, Zaikin A, Kurths J, Sanjuán M A F 2003 Phys.Rev.E 67 066119

    [5]

    Chizhevsky V N, Smeu E, Giacomelli G 2003 Phys. Rev. Lett. 91 220602

    [6]

    Chizhevsky V N, Giacomelli G 2006 Phys. Rev. E 73 022103

    [7]

    Chizhevsky V N, Giacomelli G 2008 Phys. Rev. E 77 051126

    [8]

    Yao C G, Liu Y, Zhan M 2011 Phys. Rev. E83 061122

    [9]

    Gandhimathi V M, Rajasekar S, Kurths J 2006 Phys. Lett. A 360 279

    [10]

    Gandhimathi V M, Rajasekar S 2007 Phys. Scr. 76 693

    [11]

    Yang J H, Liu X B 2010 Chaos 20 033124

    [12]

    Yang J H, Zhu H 2012 Chaos 22 013112

    [13]

    Yang J H, Zhu H 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 1316

    [14]

    Zhang L, Xie T T, Luo M K 2014 Acta Phys. Sin. 63 010506 (in Chinese) [张路, 谢天婷, 罗懋康 2014 63 010506]

    [15]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuán M A F 2009 Phys. Rev. E 80 046608

    [16]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuán M A F 2009 Chaos 19 043128

    [17]

    Yang J H, Liu H G, Chen G 2012 Acta Phys. Sin. 61 180503 (in Chinese) [杨建华, 刘后广, 程刚 2012 61 180503]

    [18]

    Wang C J 2011 Chin. Phys. Lett. 28 090504

    [19]

    Deng B, Wang J, Wei X L 2009 Chaos 19 013117

    [20]

    Deng B, Wang J, Wei X L, Yu H T, Li H Y 2014 Phys. Rev. E 89 062916

    [21]

    Yang L J, Liu W H, Yi Ming, Wang C J, Zhu Q M, Zhan X, Jia Y 2012 Phys. Rev. E 86 016209

    [22]

    Wang C J, Yang K L 2012 Chin. J. Phys. 50 607

    [23]

    Jeevarathinam C, Rajasekar S, Sanjuán M A F 2013 Ecol. Complex. 15 33

    [24]

    Ramana Reddy D V, Sen A, Johnston G L 1998 Phys. Rev. Lett. 80 5109

    [25]

    Jia Z L 2009 Int. J. Theor. Phys. 48 226

    [26]

    Wang C J, Yi M, Yang K L, Yang L J 2012 BMC Syst. Biol. 6 S9

    [27]

    Yang J H, Liu X B 2010 J. Phys. A: Math. Theor. 43 122001

    [28]

    Yang J H, Liu X B 2012 Acta Phys. Sin. 61 010505 (in Chinese) [杨建华, 刘先斌 2012 61 010505]

    [29]

    Wang C J, Yang K L, Qu S X 2014 Int. J. Mod. Phys. B 28 1450103

    [30]

    Yang J H, Liu X B 2010 Phys. Scr. 82 025006

    [31]

    Daza A, Wagemakers A, Rajasekar S, Sanjuán M A F 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 411

    [32]

    Hu D L, Yang J H, Liu X B 2014 Comput. Biol. Med. 45 80

    [33]

    Jeevarathinam C, Rajasekar S, Sanjuán M A F 2011 Phys. Rev.E 83 066205

    [34]

    Wang C J, Dai Z C, Mei D C 2011 Commun. Theor. Phys. 56 1041

    [35]

    Wio H S, Bouzat S 1999 Braz. J. Phys. 29 136

    [36]

    Chizhevsky V N 2008 Int. J. Bifurcat. Chaos 18 1767

    [37]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuán M A F 2011 Int. J. Bifurcat. Chaos 21 275

  • [1]

    Landa P, McClintock P 2000 J. Phys. A 33 L433

    [2]

    Gitterman M 2001 J. Phys. A 34 L355

    [3]

    Zaikin A A, López L, Baltanás J P, Kurths J, Sanjuán M A F 2002 Phys. Rev. E 66 011106

    [4]

    Baltanás J P, López L, Blechman I I, Landa P S, Zaikin A, Kurths J, Sanjuán M A F 2003 Phys.Rev.E 67 066119

    [5]

    Chizhevsky V N, Smeu E, Giacomelli G 2003 Phys. Rev. Lett. 91 220602

    [6]

    Chizhevsky V N, Giacomelli G 2006 Phys. Rev. E 73 022103

    [7]

    Chizhevsky V N, Giacomelli G 2008 Phys. Rev. E 77 051126

    [8]

    Yao C G, Liu Y, Zhan M 2011 Phys. Rev. E83 061122

    [9]

    Gandhimathi V M, Rajasekar S, Kurths J 2006 Phys. Lett. A 360 279

    [10]

    Gandhimathi V M, Rajasekar S 2007 Phys. Scr. 76 693

    [11]

    Yang J H, Liu X B 2010 Chaos 20 033124

    [12]

    Yang J H, Zhu H 2012 Chaos 22 013112

    [13]

    Yang J H, Zhu H 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 1316

    [14]

    Zhang L, Xie T T, Luo M K 2014 Acta Phys. Sin. 63 010506 (in Chinese) [张路, 谢天婷, 罗懋康 2014 63 010506]

    [15]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuán M A F 2009 Phys. Rev. E 80 046608

    [16]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuán M A F 2009 Chaos 19 043128

    [17]

    Yang J H, Liu H G, Chen G 2012 Acta Phys. Sin. 61 180503 (in Chinese) [杨建华, 刘后广, 程刚 2012 61 180503]

    [18]

    Wang C J 2011 Chin. Phys. Lett. 28 090504

    [19]

    Deng B, Wang J, Wei X L 2009 Chaos 19 013117

    [20]

    Deng B, Wang J, Wei X L, Yu H T, Li H Y 2014 Phys. Rev. E 89 062916

    [21]

    Yang L J, Liu W H, Yi Ming, Wang C J, Zhu Q M, Zhan X, Jia Y 2012 Phys. Rev. E 86 016209

    [22]

    Wang C J, Yang K L 2012 Chin. J. Phys. 50 607

    [23]

    Jeevarathinam C, Rajasekar S, Sanjuán M A F 2013 Ecol. Complex. 15 33

    [24]

    Ramana Reddy D V, Sen A, Johnston G L 1998 Phys. Rev. Lett. 80 5109

    [25]

    Jia Z L 2009 Int. J. Theor. Phys. 48 226

    [26]

    Wang C J, Yi M, Yang K L, Yang L J 2012 BMC Syst. Biol. 6 S9

    [27]

    Yang J H, Liu X B 2010 J. Phys. A: Math. Theor. 43 122001

    [28]

    Yang J H, Liu X B 2012 Acta Phys. Sin. 61 010505 (in Chinese) [杨建华, 刘先斌 2012 61 010505]

    [29]

    Wang C J, Yang K L, Qu S X 2014 Int. J. Mod. Phys. B 28 1450103

    [30]

    Yang J H, Liu X B 2010 Phys. Scr. 82 025006

    [31]

    Daza A, Wagemakers A, Rajasekar S, Sanjuán M A F 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 411

    [32]

    Hu D L, Yang J H, Liu X B 2014 Comput. Biol. Med. 45 80

    [33]

    Jeevarathinam C, Rajasekar S, Sanjuán M A F 2011 Phys. Rev.E 83 066205

    [34]

    Wang C J, Dai Z C, Mei D C 2011 Commun. Theor. Phys. 56 1041

    [35]

    Wio H S, Bouzat S 1999 Braz. J. Phys. 29 136

    [36]

    Chizhevsky V N 2008 Int. J. Bifurcat. Chaos 18 1767

    [37]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuán M A F 2011 Int. J. Bifurcat. Chaos 21 275

  • [1] Gao Fei, Hu Dao-Nan, Tong Heng-Qing, Wang Chuan-Mei. Chaotic analysis of fractional Willis delayed aneurysm system. Acta Physica Sinica, 2018, 67(15): 150501. doi: 10.7498/aps.67.20180262
    [2] Yang Jian-Hua, Ma Qiang, Wu Cheng-Jin, Liu Hou-Guang. A periodic vibrational resonance in the fractional-order bistable system. Acta Physica Sinica, 2018, 67(5): 054501. doi: 10.7498/aps.67.20172046
    [3] Jiao Shang-Bin, Sun Di, Liu Ding, Xie Guo, Wu Ya-Li, Zhang Qing. Vibrational resonance in a periodic potential system with stable noise. Acta Physica Sinica, 2017, 66(10): 100501. doi: 10.7498/aps.66.100501
    [4] Jiao Shang-Bin, Yang Rong, Zhang Qing, Xie Guo. Stochastic resonance of asymmetric bistable system with α stable noise. Acta Physica Sinica, 2015, 64(2): 020502. doi: 10.7498/aps.64.020502
    [5] Wang Wei-Gang, Lin Wan-Tao, Shi Lan-Fang, Mo Jia-Qi. Approximate solution of solitary wave for nonlinear-disturbed time delay long-wave system. Acta Physica Sinica, 2014, 63(11): 110204. doi: 10.7498/aps.63.110204
    [6] Yang Jian-Hua, Liu Hou-Guang, Cheng Gang. The pitchfork bifurcation and vibrational resonance in a quintic oscillator. Acta Physica Sinica, 2013, 62(18): 180503. doi: 10.7498/aps.62.180503
    [7] Zhang Yong. Analysis on positive effect of time-delay on a class of second-order oscillatory systems with unit negative feedback. Acta Physica Sinica, 2012, 61(23): 230202. doi: 10.7498/aps.61.230202
    [8] Yang Jian-Hua, Liu Xian-Bin. Analysis of periodic vibrational resonance induced by linear time delay feedback. Acta Physica Sinica, 2012, 61(1): 010505. doi: 10.7498/aps.61.010505
    [9] Shang Hui-Lin. Controlling fractal erosion of safe basins in a Helmholtz oscillator by delayed position feedback. Acta Physica Sinica, 2011, 60(7): 070501. doi: 10.7498/aps.60.070501
    [10] Zhang Li-Ping, Xu Min, Wang Hui-Nan. Hybrid control of bifurcation in a predator-prey system with three delays. Acta Physica Sinica, 2011, 60(1): 010506. doi: 10.7498/aps.60.010506
    [11] Hu Shou-Song, Tao Hong-Feng. Time-delayed generalized projective synchronization of piecewise chaotic system with unknown parameters. Acta Physica Sinica, 2011, 60(1): 010514. doi: 10.7498/aps.60.010514
    [12] Zhao Yan-Ying, Yang Ru-Ming. Using delayed feedback to control the band of saturation control in an auto-parametric dynamical system. Acta Physica Sinica, 2011, 60(10): 104304. doi: 10.7498/aps.60.104304.2
    [13] Zhang Jing-Jing, Jin Yan-Fei. Mean first-passage time and stochastic resonance in an asymmetric bistable system driven by non-Gaussian noise. Acta Physica Sinica, 2011, 60(12): 120501. doi: 10.7498/aps.60.120501
    [14] Liu Shuang, Liu Bin, Zhang Ye-Kuan, Wen Yan. Hopf bifurcation and stability of periodic solutions in a nonlinear relative rotation dynamical system with time delay. Acta Physica Sinica, 2010, 59(1): 38-43. doi: 10.7498/aps.59.38
    [15] Zhou Bing-Chang, Xu Wei. Stochastic resonance in an asymmetric bistable system driven by correlated noise. Acta Physica Sinica, 2008, 57(4): 2035-2040. doi: 10.7498/aps.57.2035
    [16] Ning Li-Juan, Xu Wei, Yang Xiao-Li. The mean first-passage time for an asymmetric bistable system driven by multiplicative and additive noise with colored correlations. Acta Physica Sinica, 2007, 56(1): 25-29. doi: 10.7498/aps.56.25
    [17] Ma Yue-Chao, Huang Li-Fang, Zhang Qing-Ling. Robust guaranteed cost H∞ control for uncertain time-varying delay system. Acta Physica Sinica, 2007, 56(7): 3744-3752. doi: 10.7498/aps.56.3744
    [18] Zhou Bing-Chang, Xu Wei. Stochastic resonance in an asymmetric bistable system driven by mixed periodic force and noises. Acta Physica Sinica, 2007, 56(10): 5623-5628. doi: 10.7498/aps.56.5623
    [19] Dong Xiao-Juan. Stochastic resonance in an asymmetric bistable system with time-delayed feedback and correlated noises. Acta Physica Sinica, 2007, 56(10): 5618-5622. doi: 10.7498/aps.56.5618
    [20] Jin Yan-Fei, Xu Wei, Ma Shao-Juan, Li Wei. The mean first-passage time for an asymmetric bistable system driven by multiplicative and additive noise. Acta Physica Sinica, 2005, 54(8): 3480-3485. doi: 10.7498/aps.54.3480
Metrics
  • Abstract views:  5831
  • PDF Downloads:  329
  • Cited By: 0
Publishing process
  • Received Date:  16 October 2014
  • Accepted Date:  07 January 2015
  • Published Online:  05 April 2015

/

返回文章
返回
Baidu
map