Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Helium ions acceleration by ultraintense laser interactions with foil-gas target

Jiao Jin-Long He Shu-Kai Deng Zhi-Gang Lu Feng Zhang Yi Yang Lei Zhang Fa-Qiang Dong Ke-Gong Wang Shao-Yi Zhang Bo Teng Jian Hong Wei Gu Yu-Qiu

Citation:

Helium ions acceleration by ultraintense laser interactions with foil-gas target

Jiao Jin-Long, He Shu-Kai, Deng Zhi-Gang, Lu Feng, Zhang Yi, Yang Lei, Zhang Fa-Qiang, Dong Ke-Gong, Wang Shao-Yi, Zhang Bo, Teng Jian, Hong Wei, Gu Yu-Qiu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Laser-driven helium ion source with multi-MeV energy has an important application in the field of fusion reactor material irradiation damage. At present, the generating of high energy helium ions by relativistic ultraintense laser interacting with helium gas jet is the main scheme of laser-driven helium ion source. However, so far, this scheme has been hard to generate the helium ion beam with the characteristics, i.e., it is forward and quasi-monoenergetic and has multi-MeV in energy and high yield. These characteristics of helium ion beam are important for studying the material irradiation damage. In this paper, we propose a new scheme in which an ultraintense laser interacting with foil-gas complex target is used to generate helium ions. With this method, we perform an experiment on XingGuang III laser facility which has three laser beams with different laser durations (nanosecond, picosecond and femtosecond). In our experiment, we use a picosecond laser beam. The wavelength of this laser beam is 1054 nm and its duration is 0.8 ps. We use an off-axis parabola mirror to focus the 100 J energy of this laser beam onto a focal spot of 25 m far away. The laser intensity reaches 51018 W/cm2. The foil-gas target is composed of a copper foil with 7 m in thickness and a helium gas nozzle which is behind the copper foil. The helium gas nozzle can generate a helium gas jet with a full ionization electron density of 51019/cm3. We use the Thomson Parabola Spectrometer to record the helium ion signals and the Electron Magnetic Spectrometer to diagnose the hot electron temperature. In the experiment, the laser pulse interacts with the front surface of the copper foil and generates lots of hot electrons. These hot electrons result in the expansion of the rear surface of the copper foil. The expanding plasma accelerates the helium ions behind the copper foil. The experimental results show that the obtained helium ions are forward and quasi-monoenergetic (the peak energy is 2.7 MeV), and the total energy of the helium ions whose energies are all higher than 0.5 MeV is about 1.1 J/sr, and correspondingly the yield of helium ions is about 1013/sr. The helium ion spectrum and hot electron temperature given by particle in cell (PIC) simulation with using the experimental parameters are consistent with the experimental results. In addition, the PIC simulations also show that helium ions are accelerated by target normal sheath acceleration and collisionless shock acceleration-like mechanisms, and the maximum helium ion energy is proportional to the hot electron temperature.
      Corresponding author: Gu Yu-Qiu, yqgu@caep.cn
    • Funds: Project supported by the Development Foundation of China Academy of Engineering Physics (Grant No. 2013A0103003) and the Science Challenge Program of China Academy of Engineering Physics .
    [1]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401

    [2]

    Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751

    [3]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542

    [4]

    Esirkepov T, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003

    [5]

    Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S, Mori W B 2004 Phys. Rev. Lett. 92 015002

    [6]

    Hasegawa A, Saito M, Nogami S, Abe K, Jones R H, Takahashi H 1999 J. Nucl. Mater. 264 355

    [7]

    Zheng H, Zhang C H, Chen B, Yang Y T, Lai X C 2014 Acta Phys. Sin. 63 106102 (in Chinese) [郑晖, 张崇宏, 陈波, 杨义涛, 赖新春 2014 63 106102]

    [8]

    Sarkisov G S, Bychenkov V Y, Novikov V N, Tikhonchuk V T 1999 Phys. Rev. E 59 7042

    [9]

    Krushelnick K, Clark E L, Najmudin Z, Salvati M, Santala M I K, Tatarakis M, Dangor A E 1999 Phys. Rev. Lett. 83 737

    [10]

    Wei M S, Mangles S P D, Najmudin Z, Walton B, Gopal A, Tatarakis M, Dangor A E, Clark E L, Evans R G, Fritzler S, Clarke R J, Hernandez-Gomez C, Neely D, Mori W, Tzoufras M, Krushelnick K 2004 Phys. Rev. Lett. 93 155003

    [11]

    Willingale L, Mangles S P D, Nilson P M, Clarke R J, Dangor A E, Kaluza M C, Karsch S, Lancaster K L, Mori W B, Najmudin Z, Schreiber J, Thomas A G R, Wei M S, Krushelnick K 2006 Phys. Rev. Lett. 96 245002

    [12]

    Fukuda Y, Faenov A Y, Tampo M, Pikuz T A, Nakamura T, Kando M, Hayashi Y, Yogo A, Sakaki H, Kameshima T, Pirozhkov A S, Ogura K, Mori M, Esirkepov T Z, Koga J, Boldarev A S, Gasilov V A, Magunov A I, Yamauchi T, Kodama R, Bolton P R, Kato Y, Tajima T, Daido H, Bulanov S V 2009 Phys. Rev. Lett. 103 165002

    [13]

    Lifschitz A, Sylla F, Kahaly S, Flacco A, Veltcheva M, Sanchez-Arriaga G, Lefebvre E, Malka V 2014 New J. Phys. 16 033031

    [14]

    Wang P X, Song J S 2002 Helium and Tritium Permeation in Materials (Beijing: National Defence Industry Press) p39 [王佩璇, 宋家树 2002 材料中的氦及氚渗透 (北京: 国防工业出版社) 第39页]

    [15]

    Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383

    [16]

    Wilks S C 1993 Phys. Fluids B 5 2603

    [17]

    Kruer W L 1988 The Physics of Laser Plasma Interactions (New York: Addison-Wesley) p133

    [18]

    Dieckmann M E, Sarri G, Romagnani L, Kourakis I, Borghesi M 2010 Plasma Phys. Control. Fusion 52 025001

    [19]

    Sarri G, Dieckmann M E, Kourakis I, Borghesi M 2010 Phys. Plasmas 17 082305

    [20]

    Sarri G, Dieckmann M E, Kourakis I, Borghesi M 2011 Phys. Rev. Lett. 107 025003

    [21]

    Sarri G, Murphy G C, Dieckmann M E, Bret A, Quinn K, Kourakis I, Borghesi M, Drury L O C, Ynnerman A 2011 New J. Phys. 13 073023

    [22]

    Beg F N, Bell A R, Dangor A E, Danson C N, Fews A P, Glinsky M E, Hammel B A, Lee P, Norreys P A, Tatarakis M 1997 Phys. Plasmas 4 447

  • [1]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401

    [2]

    Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751

    [3]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542

    [4]

    Esirkepov T, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003

    [5]

    Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S, Mori W B 2004 Phys. Rev. Lett. 92 015002

    [6]

    Hasegawa A, Saito M, Nogami S, Abe K, Jones R H, Takahashi H 1999 J. Nucl. Mater. 264 355

    [7]

    Zheng H, Zhang C H, Chen B, Yang Y T, Lai X C 2014 Acta Phys. Sin. 63 106102 (in Chinese) [郑晖, 张崇宏, 陈波, 杨义涛, 赖新春 2014 63 106102]

    [8]

    Sarkisov G S, Bychenkov V Y, Novikov V N, Tikhonchuk V T 1999 Phys. Rev. E 59 7042

    [9]

    Krushelnick K, Clark E L, Najmudin Z, Salvati M, Santala M I K, Tatarakis M, Dangor A E 1999 Phys. Rev. Lett. 83 737

    [10]

    Wei M S, Mangles S P D, Najmudin Z, Walton B, Gopal A, Tatarakis M, Dangor A E, Clark E L, Evans R G, Fritzler S, Clarke R J, Hernandez-Gomez C, Neely D, Mori W, Tzoufras M, Krushelnick K 2004 Phys. Rev. Lett. 93 155003

    [11]

    Willingale L, Mangles S P D, Nilson P M, Clarke R J, Dangor A E, Kaluza M C, Karsch S, Lancaster K L, Mori W B, Najmudin Z, Schreiber J, Thomas A G R, Wei M S, Krushelnick K 2006 Phys. Rev. Lett. 96 245002

    [12]

    Fukuda Y, Faenov A Y, Tampo M, Pikuz T A, Nakamura T, Kando M, Hayashi Y, Yogo A, Sakaki H, Kameshima T, Pirozhkov A S, Ogura K, Mori M, Esirkepov T Z, Koga J, Boldarev A S, Gasilov V A, Magunov A I, Yamauchi T, Kodama R, Bolton P R, Kato Y, Tajima T, Daido H, Bulanov S V 2009 Phys. Rev. Lett. 103 165002

    [13]

    Lifschitz A, Sylla F, Kahaly S, Flacco A, Veltcheva M, Sanchez-Arriaga G, Lefebvre E, Malka V 2014 New J. Phys. 16 033031

    [14]

    Wang P X, Song J S 2002 Helium and Tritium Permeation in Materials (Beijing: National Defence Industry Press) p39 [王佩璇, 宋家树 2002 材料中的氦及氚渗透 (北京: 国防工业出版社) 第39页]

    [15]

    Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383

    [16]

    Wilks S C 1993 Phys. Fluids B 5 2603

    [17]

    Kruer W L 1988 The Physics of Laser Plasma Interactions (New York: Addison-Wesley) p133

    [18]

    Dieckmann M E, Sarri G, Romagnani L, Kourakis I, Borghesi M 2010 Plasma Phys. Control. Fusion 52 025001

    [19]

    Sarri G, Dieckmann M E, Kourakis I, Borghesi M 2010 Phys. Plasmas 17 082305

    [20]

    Sarri G, Dieckmann M E, Kourakis I, Borghesi M 2011 Phys. Rev. Lett. 107 025003

    [21]

    Sarri G, Murphy G C, Dieckmann M E, Bret A, Quinn K, Kourakis I, Borghesi M, Drury L O C, Ynnerman A 2011 New J. Phys. 13 073023

    [22]

    Beg F N, Bell A R, Dangor A E, Danson C N, Fews A P, Glinsky M E, Hammel B A, Lee P, Norreys P A, Tatarakis M 1997 Phys. Plasmas 4 447

  • [1] Zhao Na, Ou-yang Jian-Ming, Zou De-Bin, Zhang Guo-Bo, Gan Long-Fei, Shao Fu-Qiu. Hundreds-petawatt laser pulses shaping and heavy ion acceleration based on conical plasma channels. Acta Physica Sinica, 2024, 73(16): 165202. doi: 10.7498/aps.73.20240696
    [2] Yue Dong-Ning, Dong Quan-Li, Chen Min, Zhao Yao, Geng Pan-Fei, Yuan Xiao-Hui, Sheng Zheng-Ming, Zhang Jie. Mechanism of near-forward scattering driven photon acceleration in the interaction between an intense laser and under-dense plasmas. Acta Physica Sinica, 2023, 72(12): 125201. doi: 10.7498/aps.72.20222014
    [3] Zhu Xin-Zhe, Li Bo-Yuan, Liu Feng, Li Jian-Long, Bi Ze-Wu, Lu Lin, Yuan Xiao-Hui, Yan Wen-Chao, Chen Min, Chen Li-Ming, Sheng Zheng-Ming, Zhang Jie. Experimental study on capillary discharge for laser plasma wake acceleration. Acta Physica Sinica, 2022, 71(9): 095202. doi: 10.7498/aps.71.20212435
    [4] Liu Ming-Wei, Gong Shun-Feng, Li Jin, Jiang Chun-Lei, Zhang Yu-Tao, Zhou Bing-Ju. Non-resonant direct laser acceleration in underdense plasma channels. Acta Physica Sinica, 2015, 64(14): 145201. doi: 10.7498/aps.64.145201
    [5] Liu Meng, Su Lu-Ning, Zheng Yi, Li Yu-Tong, Wang Wei-Min, Sheng Zheng-Ming, Chen Li-Ming, Ma Jing-Long, Lu Xin, Wang Zhao-Hua, Wei Zhi-Yi, Hu Bi-Tao, Zhang Jie. Origin of energetic carbon ions with different charge states in ultrashort laser-thin foil interactions. Acta Physica Sinica, 2013, 62(16): 165201. doi: 10.7498/aps.62.165201
    [6] Xu Miao-Hua, Li Hong-Wei, Liu Feng, Liu Bi-Cheng, Du Fei, Zhang Lu, Su Lu-Ning, Li Ying-Jun, Li Yu-Tong, Chen Jia-Er, Zhang Jie. Experimental studies of the characteristics of a real-time ion detector-plastic scintillator. Acta Physica Sinica, 2012, 61(10): 105202. doi: 10.7498/aps.61.105202
    [7] Zhang Lei, Dong Quan-Li, Zhao Jing, Wang Shou-Jun, Sheng Zheng-Ming, He Min-Qing, Zhang Jie. Saturation of stimulated Raman scattering in laser-plasma interaction. Acta Physica Sinica, 2009, 58(3): 1833-1837. doi: 10.7498/aps.58.1833
    [8] He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Weng Su-Ming, Chen Min, Wu Hui-Chun, Zhang Jie. Ion acceleration by shock wave induced by laser plasma interaction. Acta Physica Sinica, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [9] Luan Shi-Xia, Zhang Qiu-Ju, Gui Wei-Ling. Plasma Bragg gratings generated by the interaction of two counter-propagating laser pulses with plasmas. Acta Physica Sinica, 2008, 57(11): 7030-7037. doi: 10.7498/aps.57.7030
    [10] Study of laser plasma interactions using Vlasov and Maxwell equations. Acta Physica Sinica, 2007, 56(12): 7084-7089. doi: 10.7498/aps.56.7084
    [11] Liu Zhan-Jun, Zheng Chun-Yang, Cao Li-Hua, Li Bin, Zhu Shao-Ping. Influence of under-dense plasma on laser conical target interaction. Acta Physica Sinica, 2006, 55(1): 304-309. doi: 10.7498/aps.55.304
    [12] Chen Min, Sheng Zheng-Ming, Zheng Jun, Zhang Jie. Numerical simulation of acceleration of electrons and ions in the interaction of intense laser pulses with dense gaseous targets. Acta Physica Sinica, 2006, 55(5): 2381-2388. doi: 10.7498/aps.55.2381
    [13] Zhang Yi, Li Yu-Tong, Zhang Jie, Chen Zheng-Lin, Kodama R.. Calculation of neutron spectrum in ultraintense laser-plasmas interactions. Acta Physica Sinica, 2005, 54(10): 4799-4802. doi: 10.7498/aps.54.4799
    [14] LAI GUO-JUN, JI PEI-YONG. PHOTON ACCELERATION BASED ON LASER-PLASMA. Acta Physica Sinica, 2000, 49(12): 2399-2403. doi: 10.7498/aps.49.2399
    [15] LI YI. THE WAKE FIELD ACCELERATION IN THERMAL PLASMA. Acta Physica Sinica, 1996, 45(4): 601-607. doi: 10.7498/aps.45.601
    [16] CHANG WEN-WEI, ZHANG LI-FU, SHAO FU-QIU. LASER PLASMA WAVE ELECTRON ACCELERATORS. Acta Physica Sinica, 1991, 40(2): 182-189. doi: 10.7498/aps.40.182
    [17] MA JING-XIU, XU ZHI-ZHAN. BISTABILITY IN THE INTERACTION OF INTENSE TWO-FREQUENCY LASER WITH PLASMA. Acta Physica Sinica, 1989, 38(5): 706-713. doi: 10.7498/aps.38.706
    [18] MA JIN-XIU, XU ZHI-ZHAN. THE ELIMINATION OF PUMP DEPLETION IN LASER-PLASMA BEAT-WAVE ACCELERATORS. Acta Physica Sinica, 1988, 37(10): 1652-1657. doi: 10.7498/aps.37.1652
    [19] Xu Zhi-zhan, Yin Guang-yu, Zhang Yan-zhen, Lin Kang-chun. STIMULATED BRILLOUIN SCATTERING DUE TO LASER-PLASMA INTERACTIONS. Acta Physica Sinica, 1983, 32(4): 481-489. doi: 10.7498/aps.32.481
    [20] XU ZHI-ZHAN, LI AN-MING, CHEN SHI-SHEN, LIN LI-HUANG, LIANG XIANG-CHUN, OUYANG BIN, BI WU-JI, HOU SHING-FA, YIN GUANG-YU, ZHANG SHU-GAN, PAN CHENG-MING. INVESTIGATION OF LASER HEATING OF PLASMAS. Acta Physica Sinica, 1981, 30(8): 1077-1084. doi: 10.7498/aps.30.1077
Metrics
  • Abstract views:  5776
  • PDF Downloads:  230
  • Cited By: 0
Publishing process
  • Received Date:  30 November 2016
  • Accepted Date:  22 January 2017
  • Published Online:  05 April 2017

/

返回文章
返回
Baidu
map