Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sparse inversion method of T2 spectrum based on the L1 norm for low-field nuclear magnetic resonance

Jiang Chuan-Dong Chang Xing Sun Jia Li Tian-Wei Tian Bao-Feng

Citation:

Sparse inversion method of T2 spectrum based on the L1 norm for low-field nuclear magnetic resonance

Jiang Chuan-Dong, Chang Xing, Sun Jia, Li Tian-Wei, Tian Bao-Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The technology of low-field nuclear magnetic resonance (LF-NMR) is commonly used in food, agriculture, energy and chemical sectors due to its non-destructive, non-invasive, in situ, green and other advantages. Recently, this technology played an increasingly large role in the field of food-safety supervision especially. In oil product quality testing, conventional T2 spectrum inversion methods such as the non-negative singular value decomposition (SVD) algorithm can only reflect T2 spectrum in a smooth model. However, for a sparse model, the inversion result of non-negative SVD algorithm is expected to be very glossy, leading to low resolution of T2 spectrum and inaccurate analysis of sample property. To solve this problem, we propose a sparse T2 spectrum inversion algorithm based on the L1 norm minimization constraint. In this paper, we establish the sparse model expression of NMR echo curve, and obtain the T2 sparse spectrum inversion results based on the inner truncated Newton-point method. Furthermore, the effectiveness of L1 sparse inversion algorithm is examined by the synthetic data of the smooth model and the spare model which have different peak numbers and signaltonoise ratios (SNRs). Synthetic results show that compared with the non-negative SVD algorithm, the L1 sparse algorithm is appropriate for both the smooth model and the sparse model with higher inversion accuracy. When the number of T2 peaks in a sparse model changes from a single peak to a quad peak, the L1 sparse algorithm can still obtain accurate inversion results, while the SVD algorithm results in a gradual deterioration, and cannot even determine the peak number. Under the sparse model, when the SNR of the measured NMR curve is gradually changed from 5 dB to 50 dB, the L1 sparse algorithm at 20 dB or more can obtain accurate inversion results which have less than 10% peak error and less than 5% peak position error and amplitude average error. However, the non-negative SVD algorithm cannot obtain accurate results at each SNR. Finally, multiple sets of frying oil samples are utilized to prove the accuracy and robustness of L1 sparse inversion algorithm. Inversion results of seven sets of frying oil samples show that the L1 sparse algorithm prefers the non-negative SVD algorithm. The obtained T2 spectrum by the L1 sparse algorithm shows three peaks obviously, and the T21 peak area ratio S21 and the single component relaxation time T2w are higher linear with respect to frying time than the results by non-negative SVD algorithm, which is useful for detecting the frying oil quality change. The inversion results of the T2 spectrum at different SNRs are consistent with the synthetic results, i.e., when the SNR is reduced, the T2 spectrum inversion results from the L1 sparse algorithm are better than those from the non-negative SVD algorithm when SNR is greater than 20 dB.
      Corresponding author: Tian Bao-Feng, tianbf@jlu.edu.cn
    • Funds: Project supported by the National Key Foundation for Exploring Scientific Instrument (Grant No.2011YQ030133),the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos.41604083,41204079,41504086),the Natural Science Foundation of Jilin Province,China (Grant No.20160101281JC),and the College Students' Innovation and Entrepreneurship Training Project of Jilin University,China (Grant No.2015651016).
    [1]

    Marcone M F, Wang S, Albabish W, Nie S, Somnarain D, Hill A 2013 Food Res. Int. 51 729

    [2]

    Li X, Xiao L Z, Liu H B, Zhang Z F, Guo B X, Yu H J, Zong F R 2013 Acta Phys. Sin. 62 147602 (in Chinese)[李新, 肖立志, 刘化冰, 张宗富, 郭葆鑫, 于慧俊, 宗芳荣 2013 62 147602]

    [3]

    Wang S, Munro R A, Shi L, Kawamura I, Okitsu T, Wada A, Kim S Y, Jung K H, Brown L S, Ladizhansky V 2013 Nat. Methods 10 1007

    [4]

    Dalitz F, Cudaj M, Maiwald M, Guthausen G 2012 Prog Nucl. Mag. Res. Sp. 60 52

    [5]

    Shen Y G, Xiao Z Q, Chen S S, Zhang Y L, Jiang W, Lai K Q 2013 J. Food Sci. Technol. 31 37 (in Chinese)[申云刚, 肖竹青, 陈舜胜, 张英力, 蒋伟, 赖克强 2013 食品科学技术学报 31 37]

    [6]

    Wang Y W, Wang X, Liu B L, Shi R, Yang P Q 2012 Food Sci. 33 171 (in Chinese)[王永巍, 王欣, 刘宝林, 史然, 杨培强 2012 食品科学 33 171]

    [7]

    Zhang Q, Saleh A M, Shen Q 2012 Food Bioprocess Technol. 6 2562

    [8]

    Zhu W, Wang X, Chen L 2017 Food Chem. 216 268

    [9]

    Bro R, de Jong S 1997 J. Chemom. 11 393

    [10]

    Butler J P, Dawson S V 1981 Siam J. Numer. Anal. 18 381

    [11]

    Wang W M, Li P, Ye C H 2001 Sci. China A 31 730 (in Chinese)[王为民, 李培, 叶朝辉 2001 中国科学A 31 730]

    [12]

    Chen S S, Wang H Z, Yang P Q, Zhang X L 2014 J. Biomed. Eng. 31 682 (in Chinese)[陈珊珊, 汪红志, 杨培强, 张学龙 2014 生物医学工程学杂志31 682]

    [13]

    Li P J, Ge C, Sun G P, Chen X, Wang Y K 2010 Well Logging Technol. 34 215 (in Chinese)[李鹏举, 葛成, 孙国平, 陈新, 王彦凯 2010测井技术34 215]

    [14]

    Lin F, Wang Z W, Liu Q H, Ding Y, Li C C 2009 J. Jilin Univ. (Earth Sci. Ed) 39 1150 (in Chinese)[林峰, 王祝文, 刘菁华, 丁阳, 李长春 2009吉林大学学报(地球科学版)39 1150]

    [15]

    Wang H, Li G Y 2005 Acta Phys. Sin. 54 1431 (in Chinese)[王鹤, 李鲠颖 2005 54 1431]

    [16]

    Wu L, Chen F, Huang C Y, Ding G H, Ding Y M 2016 Acta Phys. Sin. 65 107601 (in Chinese)[吴量, 陈方, 黄重阳, 丁国辉, 丁义明 2016 65 107601]

    [17]

    Chen W C, Wang W, Gao J H, Jiang C F, Lei J L 2013 Chin. J. Geophys. 56 2771 (in Chinese)[陈文超, 王伟, 高静怀, 姜呈馥, 雷江莉 2013 地球 56 2771]

    [18]

    Mallat S G, Zhang Z 1993 IEEE Trans. Signal Proces. 41 3397

    [19]

    Zhou W 2013 M. S. Thesis (Guangzhou:South China University of Technology) (in Chinese)[周巍 2013 硕士论文 (广州:华南理工大学)]

    [20]

    Zhang L Q, Wang J Y 2008 Chin. J. Eng. Geophys. 5 509 (in Chinese)[张丽琴, 王家映 2008 工程地球 5 509]

    [21]

    Wei H, Sasaki H, Kubokawa J, Yokoyama R 1998 IEEE Trans. Power Syst. 13 870

    [22]

    Koh K, Kim S J, Boyd S 2007 J. Mach. Learn. Res. 8 1519

    [23]

    Stern A S, Donoho D L, Hoch J C 2007 J. Mag. Res. 188 295

    [24]

    Berman P, Levi O, Parmet Y, Saunders M, Wiesman Z 2013 Concept Mag. Res. A 42 72

    [25]

    Karmarkar N 1984 Combinatorica 4 373

  • [1]

    Marcone M F, Wang S, Albabish W, Nie S, Somnarain D, Hill A 2013 Food Res. Int. 51 729

    [2]

    Li X, Xiao L Z, Liu H B, Zhang Z F, Guo B X, Yu H J, Zong F R 2013 Acta Phys. Sin. 62 147602 (in Chinese)[李新, 肖立志, 刘化冰, 张宗富, 郭葆鑫, 于慧俊, 宗芳荣 2013 62 147602]

    [3]

    Wang S, Munro R A, Shi L, Kawamura I, Okitsu T, Wada A, Kim S Y, Jung K H, Brown L S, Ladizhansky V 2013 Nat. Methods 10 1007

    [4]

    Dalitz F, Cudaj M, Maiwald M, Guthausen G 2012 Prog Nucl. Mag. Res. Sp. 60 52

    [5]

    Shen Y G, Xiao Z Q, Chen S S, Zhang Y L, Jiang W, Lai K Q 2013 J. Food Sci. Technol. 31 37 (in Chinese)[申云刚, 肖竹青, 陈舜胜, 张英力, 蒋伟, 赖克强 2013 食品科学技术学报 31 37]

    [6]

    Wang Y W, Wang X, Liu B L, Shi R, Yang P Q 2012 Food Sci. 33 171 (in Chinese)[王永巍, 王欣, 刘宝林, 史然, 杨培强 2012 食品科学 33 171]

    [7]

    Zhang Q, Saleh A M, Shen Q 2012 Food Bioprocess Technol. 6 2562

    [8]

    Zhu W, Wang X, Chen L 2017 Food Chem. 216 268

    [9]

    Bro R, de Jong S 1997 J. Chemom. 11 393

    [10]

    Butler J P, Dawson S V 1981 Siam J. Numer. Anal. 18 381

    [11]

    Wang W M, Li P, Ye C H 2001 Sci. China A 31 730 (in Chinese)[王为民, 李培, 叶朝辉 2001 中国科学A 31 730]

    [12]

    Chen S S, Wang H Z, Yang P Q, Zhang X L 2014 J. Biomed. Eng. 31 682 (in Chinese)[陈珊珊, 汪红志, 杨培强, 张学龙 2014 生物医学工程学杂志31 682]

    [13]

    Li P J, Ge C, Sun G P, Chen X, Wang Y K 2010 Well Logging Technol. 34 215 (in Chinese)[李鹏举, 葛成, 孙国平, 陈新, 王彦凯 2010测井技术34 215]

    [14]

    Lin F, Wang Z W, Liu Q H, Ding Y, Li C C 2009 J. Jilin Univ. (Earth Sci. Ed) 39 1150 (in Chinese)[林峰, 王祝文, 刘菁华, 丁阳, 李长春 2009吉林大学学报(地球科学版)39 1150]

    [15]

    Wang H, Li G Y 2005 Acta Phys. Sin. 54 1431 (in Chinese)[王鹤, 李鲠颖 2005 54 1431]

    [16]

    Wu L, Chen F, Huang C Y, Ding G H, Ding Y M 2016 Acta Phys. Sin. 65 107601 (in Chinese)[吴量, 陈方, 黄重阳, 丁国辉, 丁义明 2016 65 107601]

    [17]

    Chen W C, Wang W, Gao J H, Jiang C F, Lei J L 2013 Chin. J. Geophys. 56 2771 (in Chinese)[陈文超, 王伟, 高静怀, 姜呈馥, 雷江莉 2013 地球 56 2771]

    [18]

    Mallat S G, Zhang Z 1993 IEEE Trans. Signal Proces. 41 3397

    [19]

    Zhou W 2013 M. S. Thesis (Guangzhou:South China University of Technology) (in Chinese)[周巍 2013 硕士论文 (广州:华南理工大学)]

    [20]

    Zhang L Q, Wang J Y 2008 Chin. J. Eng. Geophys. 5 509 (in Chinese)[张丽琴, 王家映 2008 工程地球 5 509]

    [21]

    Wei H, Sasaki H, Kubokawa J, Yokoyama R 1998 IEEE Trans. Power Syst. 13 870

    [22]

    Koh K, Kim S J, Boyd S 2007 J. Mach. Learn. Res. 8 1519

    [23]

    Stern A S, Donoho D L, Hoch J C 2007 J. Mag. Res. 188 295

    [24]

    Berman P, Levi O, Parmet Y, Saunders M, Wiesman Z 2013 Concept Mag. Res. A 42 72

    [25]

    Karmarkar N 1984 Combinatorica 4 373

  • [1] Liu Fei, Sun Shao-Jie, Han Ping-Li, Zhao Lin, Shao Xiao-Peng. Clear underwater vision in non-uniform scattering field by low-rank-and-sparse-decomposition-based olarization imaging. Acta Physica Sinica, 2021, 70(16): 164201. doi: 10.7498/aps.70.20210314
    [2] Yang Yu-Jing, Ye Rui, Zhao Han-Qing, Wan Ling, Lin Ting-Ting. A modeling and inversion method of spin echoes to measure magnetic resonance sounding transverse relaxation time in surface applications. Acta Physica Sinica, 2021, 70(6): 063301. doi: 10.7498/aps.70.20201427
    [3] Wu Liang, Chen Fang, Huang Chong-Yang, Ding Guo-Hui, Ding Yi-Ming. Multi-exponential inversion of T2 spectrum in NMR based on improved nonlinear fitting. Acta Physica Sinica, 2016, 65(10): 107601. doi: 10.7498/aps.65.107601
    [4] Li Jun, Cui Jiang-Yu, Yang Xiao-Dong, Luo Zhi-Huang, Pan Jian, Yu Qi, Li Zhao-Kai, Peng Xin-Hua, Du Jiang-Feng. Quantum control of nuclear magnetic resonance spin systems. Acta Physica Sinica, 2015, 64(16): 167601. doi: 10.7498/aps.64.167601
    [5] Fan Yi-Ren, Wu Fei, Li Hu, Huo Ning-Ning, Wang Yao-Sen, Deng Shao-Gui, Yang Pei-Qiang. A modified design of pulse sequence and inversion method for D-T2 two-dimensional NMR. Acta Physica Sinica, 2015, 64(9): 099301. doi: 10.7498/aps.64.099301
    [6] Li Xin, Xiao Li-Zhi, Liu Hua-Bing, Zhang Zong-Fu, Guo Bao-Xin, Yu Hui-Jun, Zong Fang-Rong. Optimization of nuclear magnetic resonance refocusing pulses to enhance signal intensity in gradient B0 field. Acta Physica Sinica, 2013, 62(14): 147602. doi: 10.7498/aps.62.147602
    [7] Wang Ning, Jin Yi-Rong, Deng Hui, Wu Yu-Lin, Zheng Guo-Lin, Li Shao, Tian Ye, Ren Yu-Feng, Chen Ying-Fei, Zheng Dong-Ning. Ultra-low field magnetic resonance imaging based on high Tc dc-SQUID. Acta Physica Sinica, 2012, 61(21): 213302. doi: 10.7498/aps.61.213302
    [8] Song Gai-Bei, Cao Shi-Xun, Zhang Jia-Jia, Yuan Shu-Juan, Shimizu Kenji, Zhang Jin-Cang. Nuclear magnetic resonance and magnetic structure study on Sr doped Eu1-xSrxMnO3 system. Acta Physica Sinica, 2012, 61(5): 057501. doi: 10.7498/aps.61.057501
    [9] Li Shao, Ren Yu-Feng, Wang Ning, Tian Ye, Chu Hai-Feng, Li Song-Lin, Chen Ying-Fei, Li Jie, Chen Geng-Hua, Zheng Dong-Ning. Detection of nuclear magnetic resonance in the microtesla range using a high Tc dc-superconducting quantum interference device. Acta Physica Sinica, 2009, 58(8): 5744-5749. doi: 10.7498/aps.58.5744
    [10] Pan Ke-Jia, Chen Hua, Tan Yong-Ji. Multi-exponential inversion of T2 spectrum in NMR based on differential evolution algorithm. Acta Physica Sinica, 2008, 57(9): 5956-5961. doi: 10.7498/aps.57.5956
    [11] Wang He, Li Geng-Ying. Combination of inversion and fitting as an effective method for the analysis of NMR relaxation data. Acta Physica Sinica, 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
    [12] Wang Hong, Lou Ping, Zhuang Yong-He. Flow equations for solving elementary excitation energy spectrum of the t-J model. Acta Physica Sinica, 2004, 53(2): 577-581. doi: 10.7498/aps.53.577
    [13] GUO JIAN-XIN, MAO XI-AN. ARTIFACTS IN 2D NMR NOESY SPECTRA OF WATER DUE TO RADIATION DAMPING. Acta Physica Sinica, 1996, 45(11): 1793-1799. doi: 10.7498/aps.45.1793
    [14] LI GENG-YING, WU XUE-WEN. Z ECHO NMR POWDER SPECTRUM OF THREE-LEVEL SYSTEMS. Acta Physica Sinica, 1991, 40(10): 1717-1722. doi: 10.7498/aps.40.1717
    [15] LI GENG-YING, WU XUE-WEN. HIGH-RESOLUTION NMR SPECTROSCOPIC STUDY ON THE CENTRAL TRANSITION OF SPIN-3/2 QUADRUPOLAR NUCLEI IN POWDERS. Acta Physica Sinica, 1990, 39(11): 1848-1853. doi: 10.7498/aps.39.1848
    [16] LI ZI-YUAN, JIANG DONG-YAN, JIN QING-HUA, DING DA-TONG. A NMR STUDY OF THE LI2O·P2O3·CdO GLASSES. Acta Physica Sinica, 1989, 38(2): 326-332. doi: 10.7498/aps.38.326
    [17] FAN XI-QING, ZHANG DE-XUAN, SHEN SAN-GUO. A1, T2 SYMMETRIC DEEP LEVEL WAVE FUNCTIONS IN 3c-SiC. Acta Physica Sinica, 1988, 37(2): 183-188. doi: 10.7498/aps.37.183
    [18] SU FANG. 7Li NMR INVESTIGATIONS DURING PER-CRYSTALLIZATION PROCESS IN AMORPHOUS IONIC CONDUCTOR B2O3- 0.7Li2O-0.7LiCl-xAl2O3. Acta Physica Sinica, 1988, 37(4): 529-537. doi: 10.7498/aps.37.529
    [19] WANG GANG, LI ZI-RONG, CHEN LI-QUAN, WANG LIAN-ZHONG. 7Li NMR INVESTIGATIONS IN AMORPHOUS IONIC CONDUC-TOR Li2B2O4. Acta Physica Sinica, 1983, 32(8): 1104-1108. doi: 10.7498/aps.32.1104
    [20] WANG GANG, LI ZI-RONG, CHEN LI-QUAN, ZHAO ZONG-YUAN. 7Li NMR INVESTIGATIONS IN LiCl WITH DSPP. Acta Physica Sinica, 1981, 30(12): 1569-1575. doi: 10.7498/aps.30.1569
Metrics
  • Abstract views:  8034
  • PDF Downloads:  160
  • Cited By: 0
Publishing process
  • Received Date:  13 September 2016
  • Accepted Date:  18 November 2016
  • Published Online:  05 February 2017

/

返回文章
返回
Baidu
map