Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Compression of correlation time of chirped biphotons by binary phase modulation

Li Bai-Hong Wang Dou-Dou Pang Hua-Feng Zhang Tao Xie You Gao Feng Dong Rui-Fang Li Yong-Fang Zhang Shou-Gang

Citation:

Compression of correlation time of chirped biphotons by binary phase modulation

Li Bai-Hong, Wang Dou-Dou, Pang Hua-Feng, Zhang Tao, Xie You, Gao Feng, Dong Rui-Fang, Li Yong-Fang, Zhang Shou-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Chirped biphotons generated via spontaneous parametric down-conversion in chirped quasi-phase-matched nonlinear crystals have ultrabroadband frequency spectra. However, the presence of quadratic frequency phase factor restricts their applications in quantum metrology and quantum lithography due to simultaneously lengthening the correlation times of biphotons. The key point to improve the temporal correlation of chirped biphotons is how to compensate for or remove the quadratic frequency phase factor. Phase compensation methods have been demonstrated to solve this problem in earlier reports. But the compressed efficiencies of these methods are strongly dependent on the length of the utilized dispersive medium and decreased by the higher-order dispersion of the dispersive medium. In this paper, based on the phase transform of a lens for a light field in spatial domain, we theoretically propose a method of the equivalent removal of the quadratic phase by realizing a Fresnel-zone lens-like modulation on the biphotons spectrum in frequency domain, thereby compressing the correlation time of chirped biphotons to the Fourier-transform limited width. By analogy to the idea of Fresnel wave zone plate, this lens-like modulation can be realized by dividing the biphoton spectrum into Fresnel frequency zones and applying only binary spectral phase (0, ) sequentially to these zones. The theoretical results show that the correlation time width of chirped biphotons can be reduced, and the correlation signal intensity can be increased compared with the original one, by a factor about 100 and 30, respectively. The physical reason is that these Fresnel frequency zones under binary spectral phase modulation will lead to constructive interference at zero delay and destructive interference elsewhere. This method can significantly enhance biphoton time correlation without biphoton signal loss and avoids the limitations of phase compensation methods. Therefore, we can obtain biphotons with both ultra-broad bandwidth and ultra-short correlation times by using our proposed method. The attainable compression efficiency is constrained by the division resolution of the Fresnel frequency zones and the precision of applied binary phase modulations. It should be noted that a constraint condition about crystal length, chirp parameter and the number of frequency zones is summarized in designing the experimental parameters for the desired compression goal. Since binary spectral phase and 0 are easy to obtain and calibrate in practice, we thus believe that our proposed method is feasible to implement experimentally. Moreover, the proposed method can also be generalized to other fields relating to the quadratic phase factor, such as two-photon absorption, second-harmonic generation and chirped pulse compression.
      Corresponding author: Li Bai-Hong, baihongli@xust.edu.cn;dongruifang@ntsc.ac.cn ; Dong Rui-Fang, baihongli@xust.edu.cn;dongruifang@ntsc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11504292,11504291,11604260,91336108,11174282,Y133ZK1101),the Young Top-notch Talents Program of Organization Department of the CPC Central Committee,China (Grant No.[2013]33),CAS Frontier Science Key Research Project (Grant No.QYZDB-SSW-SLH007),the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No.2016JQ1036),and Research Foundation for the Excellent Returned Overseas Chinese Scholars of Shaanxi Province,China.
    [1]

    Carrasco S, Torres J P, Torner L, Sergienko A, Saleh B E A, Teich M C 2004 Opt. Lett. 29 2429

    [2]

    Khan I A, Howell J C 2006 Phys. Rev. A 73 031801

    [3]

    Law C K, Walmsley I A, Eberly J H 2000 Phys. Rev. Lett. 84 5304

    [4]

    Dauler E, Jaeger G, Muller A, Migdall A L, Sergienko A V 1999 J. Res. Natl. Inst. Stand. Technol. 104 1

    [5]

    Carrasco S, Nasr M B, Sergienko A V, Saleh B E, Teich M C, Torres J P, Torner L 2006 Opt. Lett. 31 253

    [6]

    O'Donnell K A, U'Ren A B 2007 Opt. Lett. 32 817

    [7]

    Hendrych M, Shi X J, Valencia A, Torres J P 2009 Phys. Rev. A 79 023817

    [8]

    Katamadze K G, Kulik S P 2011 JETP Lett. 112 20

    [9]

    Okano M, Okamoto R, Tanaka A, Subashchandran S, Takeuchi S 2012 Opt. Express 20 13977

    [10]

    Hum D S, Fejer M M 2007 C. R. Phys. 8 180

    [11]

    Nasr M B, Carrasco S, Saleh B E A, Sergienko A V, Teich M C, Torres J P, Torner L, Hum D S, Fejer M M 2008 Phys. Rev. Lett. 100 183601

    [12]

    Nasr M B, Minaeva O, Goltsman G N, Sergienko A V, Saleh B E, Teich M C 2008 Opt. Express 16 15104

    [13]

    Fraine A, Minaeva O, Simon D S, Egorov R, Sergienko A V 2012 Opt. Lett. 37 1910

    [14]

    Antonosyan D A, Tamazyan A R, Kryuchkyan G Y 2012 J. Phys. B:At. Mol. Opt. Phys. 45 215502

    [15]

    Harris S E 2007 Phys. Rev. Lett. 98 063602

    [16]

    Sensarm S, Yin G Y, Harris S E 2010 Phys. Rev. Lett. 104 253602

    [17]

    Tanaka A, Okamoto R, Lim H H, Subashchandran S, Okano M, Zhang L B, Kang L, Chen J, Wu P H, Hirohata T, Kurimura S, Takeuchi S 2012 Opt. Express 20 25228

    [18]

    Brida G, Chekhova M V, Degiovanni I P, Genovese M, Kitaeva G K, Meda A, Shumilkina O A 2009 Phys. Rev. Lett. 103 193602

    [19]

    Brida G, Chekhova M V, Degiovanni I P, Genovese M, Kitaeva G Kh, Meda A, Shumilkina O A 2010 Phys. Rev. A 81 053828

    [20]

    Chekhova M V, Shumilkina O A 2009 JETP Lett. 90 172

    [21]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222

    [22]

    D'Angelo M, Chekhova M V, Shih Y 2001 Phys. Rev. Lett. 87 013602

    [23]

    Gea-Banacloche J 1989 Phys. Rev. Lett. 62 1603

    [24]

    Georgiades N P, Polzik E S, Edamatsu K, Kimble H J, Parkins A S 1995 Phys. Rev. Lett. 75 3426

    [25]

    Valencia A, Scarcelli G, Shih Y 2004 Appl. Phys. Lett. 85 2655

    [26]

    Pe'er A, Dayan B, Friesem A A, Silberberg Y 2005 Phys. Rev. Lett. 94 073601

    [27]

    Weiner A M 2011 Opt. Commun. 284 3669

    [28]

    Zäh F, Halder M, Feurer T 2008 Opt. Express 16 16452

    [29]

    Lukens J M, Dezfooliyan A, Langrock C, Fejer M M, Leaird D E, Weiner A M Opt. Lett. 38 4652

    [30]

    Lukens J M, Dezfooliyan A, Langrock C, Fejer M M, Leaird D E, Weiner A M 2013 Phys. Rev. Lett. 111 193603

    [31]

    Lukens J M, Dezfooliyan A, Langrock C, Fejer M M, Leaird D E, Weiner A M 2014 Phys. Rev. Lett. 112 133602

    [32]

    Lukens J M, Odele O, Langrock C, Fejer M M, Leaird D E, Weiner A M 2014 Opt. Express 22 9585

    [33]

    Hecht E 1989 Optics (2nd Ed.) (Reading, MA:Addison-Wesley) pp434-458

    [34]

    Broers B, Noordam L D, van Linden van den Heuvell H B 1992 Phys. Rev. A 46 2749

    [35]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge:Cambridge University Press)

    [36]

    Chekhova M V 2002 JETP Lett. 75 225

    [37]

    Valencia A, Chekhova M V, Trifonov A, Shih Y 2002 Phys. Rev. Lett. 88 183601

    [38]

    Li B H, Xu Y G, An L, Lin Q L, Zhu H F, Lin F K, Li Y F 2014 Opt. Lett. 39 2443

    [39]

    Li B H, Xu Y G, Zhu H F, Lin Q L, An L, Lin F K, Li Y F 2014 J. Opt. Soc. Am. B 31 2511

  • [1]

    Carrasco S, Torres J P, Torner L, Sergienko A, Saleh B E A, Teich M C 2004 Opt. Lett. 29 2429

    [2]

    Khan I A, Howell J C 2006 Phys. Rev. A 73 031801

    [3]

    Law C K, Walmsley I A, Eberly J H 2000 Phys. Rev. Lett. 84 5304

    [4]

    Dauler E, Jaeger G, Muller A, Migdall A L, Sergienko A V 1999 J. Res. Natl. Inst. Stand. Technol. 104 1

    [5]

    Carrasco S, Nasr M B, Sergienko A V, Saleh B E, Teich M C, Torres J P, Torner L 2006 Opt. Lett. 31 253

    [6]

    O'Donnell K A, U'Ren A B 2007 Opt. Lett. 32 817

    [7]

    Hendrych M, Shi X J, Valencia A, Torres J P 2009 Phys. Rev. A 79 023817

    [8]

    Katamadze K G, Kulik S P 2011 JETP Lett. 112 20

    [9]

    Okano M, Okamoto R, Tanaka A, Subashchandran S, Takeuchi S 2012 Opt. Express 20 13977

    [10]

    Hum D S, Fejer M M 2007 C. R. Phys. 8 180

    [11]

    Nasr M B, Carrasco S, Saleh B E A, Sergienko A V, Teich M C, Torres J P, Torner L, Hum D S, Fejer M M 2008 Phys. Rev. Lett. 100 183601

    [12]

    Nasr M B, Minaeva O, Goltsman G N, Sergienko A V, Saleh B E, Teich M C 2008 Opt. Express 16 15104

    [13]

    Fraine A, Minaeva O, Simon D S, Egorov R, Sergienko A V 2012 Opt. Lett. 37 1910

    [14]

    Antonosyan D A, Tamazyan A R, Kryuchkyan G Y 2012 J. Phys. B:At. Mol. Opt. Phys. 45 215502

    [15]

    Harris S E 2007 Phys. Rev. Lett. 98 063602

    [16]

    Sensarm S, Yin G Y, Harris S E 2010 Phys. Rev. Lett. 104 253602

    [17]

    Tanaka A, Okamoto R, Lim H H, Subashchandran S, Okano M, Zhang L B, Kang L, Chen J, Wu P H, Hirohata T, Kurimura S, Takeuchi S 2012 Opt. Express 20 25228

    [18]

    Brida G, Chekhova M V, Degiovanni I P, Genovese M, Kitaeva G K, Meda A, Shumilkina O A 2009 Phys. Rev. Lett. 103 193602

    [19]

    Brida G, Chekhova M V, Degiovanni I P, Genovese M, Kitaeva G Kh, Meda A, Shumilkina O A 2010 Phys. Rev. A 81 053828

    [20]

    Chekhova M V, Shumilkina O A 2009 JETP Lett. 90 172

    [21]

    Giovannetti V, Lloyd S, Maccone L 2011 Nat. Photon. 5 222

    [22]

    D'Angelo M, Chekhova M V, Shih Y 2001 Phys. Rev. Lett. 87 013602

    [23]

    Gea-Banacloche J 1989 Phys. Rev. Lett. 62 1603

    [24]

    Georgiades N P, Polzik E S, Edamatsu K, Kimble H J, Parkins A S 1995 Phys. Rev. Lett. 75 3426

    [25]

    Valencia A, Scarcelli G, Shih Y 2004 Appl. Phys. Lett. 85 2655

    [26]

    Pe'er A, Dayan B, Friesem A A, Silberberg Y 2005 Phys. Rev. Lett. 94 073601

    [27]

    Weiner A M 2011 Opt. Commun. 284 3669

    [28]

    Zäh F, Halder M, Feurer T 2008 Opt. Express 16 16452

    [29]

    Lukens J M, Dezfooliyan A, Langrock C, Fejer M M, Leaird D E, Weiner A M Opt. Lett. 38 4652

    [30]

    Lukens J M, Dezfooliyan A, Langrock C, Fejer M M, Leaird D E, Weiner A M 2013 Phys. Rev. Lett. 111 193603

    [31]

    Lukens J M, Dezfooliyan A, Langrock C, Fejer M M, Leaird D E, Weiner A M 2014 Phys. Rev. Lett. 112 133602

    [32]

    Lukens J M, Odele O, Langrock C, Fejer M M, Leaird D E, Weiner A M 2014 Opt. Express 22 9585

    [33]

    Hecht E 1989 Optics (2nd Ed.) (Reading, MA:Addison-Wesley) pp434-458

    [34]

    Broers B, Noordam L D, van Linden van den Heuvell H B 1992 Phys. Rev. A 46 2749

    [35]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge:Cambridge University Press)

    [36]

    Chekhova M V 2002 JETP Lett. 75 225

    [37]

    Valencia A, Chekhova M V, Trifonov A, Shih Y 2002 Phys. Rev. Lett. 88 183601

    [38]

    Li B H, Xu Y G, An L, Lin Q L, Zhu H F, Lin F K, Li Y F 2014 Opt. Lett. 39 2443

    [39]

    Li B H, Xu Y G, Zhu H F, Lin Q L, An L, Lin F K, Li Y F 2014 J. Opt. Soc. Am. B 31 2511

  • [1] Hu Fei-Fei, Li Si-Ying, Zhu Shun, Huang Yu, Lin Xu-Bin, Zhang Si-Tuo, Fan Yun-Ru, Zhou Qiang, Liu Yun. Generation of multiwavelength quantum correlated photon pair for quantum entanglement key distribution. Acta Physica Sinica, 2024, 73(23): 230304. doi: 10.7498/aps.73.20241274
    [2] Li Juan, Liu Peng, Xiang Xiao, Liu Tao, Dong Rui-Fang, Zhang Shou-Gang. Effect of spatial walk-off on squeezing properties of quantum optical frequency combs. Acta Physica Sinica, 2023, 72(8): 084206. doi: 10.7498/aps.72.20222343
    [3] Wei Tian-Li, Wu De-Wei, Yang Chun-Yan, Luo Jun-Wen, Li Xiang, Zhu Hao-Nan. Squeezing angle locking of entangled microwave based on photon counting. Acta Physica Sinica, 2019, 68(9): 090301. doi: 10.7498/aps.68.20182077
    [4] Hong Wei-Yi. “Inverted-image” frequency chirp induced by self-phase modulation in highly noninstantaneous medium. Acta Physica Sinica, 2015, 64(2): 024214. doi: 10.7498/aps.64.024214
    [5] Tian Yan, Huang Li, Luo Mao-Kang. Effects of time-periodic modulation of cross-correlation intensity between noises on stochastic resonance of over-damped linear system. Acta Physica Sinica, 2013, 62(5): 050502. doi: 10.7498/aps.62.050502
    [6] Wang Kun, Cui Liang, Zhang Xiu-Ting, Li Xiao-Ying. Influence of pump chirp on the purity of an all fiber source of correlated photon pairs. Acta Physica Sinica, 2013, 62(16): 164205. doi: 10.7498/aps.62.164205
    [7] Yang Hua-Qian, Liao Xiao-Feng, Kwok-Wo Wong, Zhang Wei, Wei Peng-Cheng. SPIHT-based joint image compression and encryption. Acta Physica Sinica, 2012, 61(4): 040505. doi: 10.7498/aps.61.040505
    [8] Zhi Rong, Gong Zhi-Qiang, Wang Qi-Guang, Xiong Kai-Guo. Influence of time delay on global temperature correlation. Acta Physica Sinica, 2011, 60(8): 089202. doi: 10.7498/aps.60.089202
    [9] Wang Dong. Direct Bell state measurement for optical beams with correlated amplitude quadratures and anticorrelated phase quadratures. Acta Physica Sinica, 2010, 59(11): 7596-7601. doi: 10.7498/aps.59.7596
    [10] Chen De-Yi, Wang Zhong-Long. Effects of time period modulation of the noise correlation intensity on stochastic resonance of the single-mode laser. Acta Physica Sinica, 2008, 57(6): 3333-3336. doi: 10.7498/aps.57.3333
    [11] Zou Shao-Cun, Xu Wei, Jin Yan-Fei. The study of stochastic Van der Pol system with delayed state feedback. Acta Physica Sinica, 2008, 57(12): 7527-7534. doi: 10.7498/aps.57.7527
    [12] Ma Song-Shan, Xu Hui, Li Yan-Feng, Zhang Peng-Hua. Characteristic of alternating current hopping conductivity in one-dimensional binary disordered system with off-diagonal correlations. Acta Physica Sinica, 2007, 56(9): 5394-5399. doi: 10.7498/aps.56.5394
    [13] Ma Song-Shan, Xu Hui, Liu Xiao-Liang, Wang Huan-You. Characteristics of hopping conductivity in one-dimensional binary disordered system with off-diagonal correlations. Acta Physica Sinica, 2007, 56(5): 2852-2857. doi: 10.7498/aps.56.2852
    [14] Wang Zhong-Chun. Nonclassical feature of the field in the two-atom Tavis-Cummings model with atomic motion. Acta Physica Sinica, 2006, 55(1): 192-196. doi: 10.7498/aps.55.192
    [15] Xia Guang-Qiong, Wu Zheng-Mao, Chen Hai-Tao. Suppression of pulse walk-off effect during the process of pulse compression by cross-phase modulation of pulse pair. Acta Physica Sinica, 2005, 54(3): 1167-1171. doi: 10.7498/aps.54.1167
    [16] Wang Ji-Suo, Feng Jian, Liu Tang-Kun, Zhang Ming-Sheng. . Acta Physica Sinica, 2002, 51(11): 2509-2513. doi: 10.7498/aps.51.2509
    [17] HU XIANG-MING, PENG JIN-SHENG. THE OPERATION IN THE STEADY STATE AND SQUEEZING OF QUANTUM NOISE IN TWO-MODE TWO-PHOTON CORRELATED-SPONTANEOUS-EMISSION LASERS. Acta Physica Sinica, 1997, 46(2): 255-266. doi: 10.7498/aps.46.255
    [18] CAO WEN-HUA, ZHANG YOU-WEI, LIU SONG-HAO, GUO QI, XU WEN-CHENG. COMPRESSION OF BRIGHT OPTICAL PULSE BY PULSE PAIR IN THE NORMAL DISPERSION REGIME OF SINGLE MODE FIBERS. Acta Physica Sinica, 1997, 46(5): 919-928. doi: 10.7498/aps.46.919
    [19] Xu Jing-Bo, Liu Yi-Chang, Gao Cun-Xiao. . Acta Physica Sinica, 1995, 44(2): 216-224. doi: 10.7498/aps.44.216
    [20] HUO YU-PING. THE LONG TIME ASYMPTOTIC BEHAVIOUR OF THE CORRELATION FUNCTIONS——THE INFLUENCES OF THE WAVES ON THE RELAXATION PROCESSES. Acta Physica Sinica, 1980, 29(1): 73-92. doi: 10.7498/aps.29.73
Metrics
  • Abstract views:  5955
  • PDF Downloads:  222
  • Cited By: 0
Publishing process
  • Received Date:  16 September 2016
  • Accepted Date:  24 November 2016
  • Published Online:  05 February 2017

/

返回文章
返回
Baidu
map