Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Controlling spiral wave and spatiotemporal chaos in cardiac tissues by slowing sodium channel activation and inactivation

Pan Fei Wang Xiao-Yan Wang Peng Li Wei-Xin Tang Guo-Ning

Citation:

Controlling spiral wave and spatiotemporal chaos in cardiac tissues by slowing sodium channel activation and inactivation

Pan Fei, Wang Xiao-Yan, Wang Peng, Li Wei-Xin, Tang Guo-Ning
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Much evidence shows that the appearance and instability of the spiral wave in cardiac tissue can be linked to a kind of heart disease. Therefore there needs a method of controlling spiral wave more safely and effectively. The intelligent modification of specific ion channel to achieve desired control is the future direction of gene therapy in heart disease. The key question that has to be answered is which ion channel is the best candidate for controlling spiral wave. Modern biological technology has been able to make the mutation of sodium channel gene to change its relaxation time constant. In this paper, we adopt the Luo-Rudy phase I model to investigate how to regulate the relaxation time constant of sodium channel gate to control spiral wave and spatiotemporal chaos in cardiac tissues. We suggest a control strategy which slows down the rate of sodium current activation and inactivation by increasing the relaxation time constant of the sodium activation gate by up to times while its fast inactivation gate is clamped to 0.77. Numerical simulation results show that a gradual increase of will cause the activation gate of sodium current to reach maximum more slowly, and its amplitude is gradually reduced, so that the amplitude and duration of the action potential of cardiomyocyte are gradually reduced. When the factor is large enough, the spiral wave and spatiotemporal chaos cannot propagate in the medium except planar wave with low frequency. The reason is that the excitabilities of medium and wave speed significantly decrease. Therefore, the spiral waves and spatiotemporal chaos can be effectively eliminated when the control time is properly selected and the factor is large enough. Spiral wave and spatiotemporal chaos disappear mainly due to conduction obstacle. In some cases, spiral wave can disappear through the transition from spiral wave to target wave or tip retraction. Spatiotemporal chaos disappears after spatiotemporal chaos has evolved into meandering spiral wave. When the parameters are chosen properly, the phenomenon that spiral wave evolves into a self-sustained target wave is also observed. The corresponding target wave source is the pair of spiral waves with opposite rotation directions. These results can provide useful information for gene therapy in heart disease.
      Corresponding author: Tang Guo-Ning, tangguoning@sohu.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11565005, 11365003, 11165004).
    [1]

    Gurevich E L, Moskalenko A S, Zanin A L, Astrov Y A, Purwins H G 2003 Phys. Rev. A 307 299

    [2]

    Ecke R E, Hu Y, Mainieri R, Ahlers G 1995 Science 269 1704

    [3]

    Winfree A T 1972 Science 175 634

    [4]

    Belmonte A, Ouyang Q, Flesselles J M 1997 J. Phys. Ⅱ France 7 1425

    [5]

    Davidenko J M, Pertsov A V, Salomonsz R, Baxter W, Jalife J 1992 Nature 355 349

    [6]

    Huang X Y, Xu W F, Liang J M, Takagaki K, Gao X, Wu J Y 2010 Neuron 68 978

    [7]

    Pertsov A M, Davidenko J M, Salomonsz R, Baxter W T, Jalife J 1993 Circ. Res. 72 631

    [8]

    Lechleiter J, Girard S, Peralta E, Clapham D 1991 Science 252 123

    [9]

    Witkowski F X, Leon L J, Penkoske P A, Giles W R, Spano M L, Ditto W L, Winfree A T 1998 Nature 392 78

    [10]

    Yang H J, Yang J Z 2007 Phys. Rev. E 76 016206

    [11]

    Liu F C, Wang X F, Li X C, Dong L F 2007 Chin. Phys. 16 2640

    [12]

    Liu Y, Li S R, Ma J, Ying H P 2009 Chin. Phys. B 18 98

    [13]

    Deng M Y, Tang G N, Kong L J, Liu M R 2010 Acta Phys. Sin. 59 2339 (in Chinese) [邓敏艺, 唐国宁, 孔令江, 刘慕仁2010 59 2339]

    [14]

    Pan F, Li W X, Wang X Y, Tang G N 2015 Acta Phys. Sin. 64 218202 (in Chinese) [潘飞, 黎维新, 王小艳, 唐国宁2015 64 218202]

    [15]

    Pan D B, Gao X, Feng X, Pan J T, Zhang H 2016 Sci. Rep. 6 21876

    [16]

    Yuan G Y, Xu A G, Wang G R, Chen S G 2010 Europhys. Lett. 90 10013

    [17]

    Wang P Y, Xie P, Yin H W 2003 Chin. Phys. 12 674

    [18]

    Gray R A 2002 Chaos 12 941

    [19]

    Li W W, Janardhan A H, Fedorov V V, Sha Q, Schuessler R B, Efimov I R 2011 Circ. Arrhythm. Electrophysiol. 4 917

    [20]

    Zhang H, Cao Z J, Wu N J, Ying H P, Hu G 2005 Phys. Rev. Lett. 94 188301

    [21]

    Magome N, Kanaporis G, Moisan N, Tanaka K, Agladze K 2011 Tissue Eng.: Part A 17 21

    [22]

    Nattel S, Carlsson L 2006 Nat. Rev. Drug Discov. 5 1034

    [23]

    Antzelevitch C, Brugada P, Brugada J, Brugada R, Shimizu W, Gussak I, Riera A R P 2002 Circ. Res. 91 1114

    [24]

    ten-Tusscher K H W J, Panfilov A V 2006 Phys. Med. Biol. 51 6141

    [25]

    Tran D X, Sato D, Yochelis A, Weiss J N, Garfinkel A, Qu Z 2009 Phys. Rev. Lett. 102 258103

    [26]

    ten-Tusscher K H W J, Hren R, Panfilov A V 2007 Circ. Res. 100 e87

    [27]

    ten-Tusscher K H W J, Panfilov A V 2006 Am. J. Physiol. Heart Circ. Physiol. 291 H1088

    [28]

    Zhang Z S, Tranquillo J, Neplioueva V, Bursac N, Grant A O 2007 Am. J. Physiol. Heart Circ. Physiol. 292 H399

    [29]

    Osterrieder W, Noma A, Trautwein W 1980 Pflgers Arch. 386 101

    [30]

    Qu Z, Garfinkel A, Chen P S, Weiss J N 2000 Circulation 102 1664

    [31]

    ten-Tusscher K H W J 2005 Ph. D. Dissertation (Netherlands: Utrecht University)

    [32]

    Luo C H, Rudy Y 1991 Circ. Res. 68 1501

    [33]

    Hsiao P Y, Tien H C, Lo C P, Juang J M J, Wang Y H, Sung R J 2013 Appl. Clin. Genet. 6 1

  • [1]

    Gurevich E L, Moskalenko A S, Zanin A L, Astrov Y A, Purwins H G 2003 Phys. Rev. A 307 299

    [2]

    Ecke R E, Hu Y, Mainieri R, Ahlers G 1995 Science 269 1704

    [3]

    Winfree A T 1972 Science 175 634

    [4]

    Belmonte A, Ouyang Q, Flesselles J M 1997 J. Phys. Ⅱ France 7 1425

    [5]

    Davidenko J M, Pertsov A V, Salomonsz R, Baxter W, Jalife J 1992 Nature 355 349

    [6]

    Huang X Y, Xu W F, Liang J M, Takagaki K, Gao X, Wu J Y 2010 Neuron 68 978

    [7]

    Pertsov A M, Davidenko J M, Salomonsz R, Baxter W T, Jalife J 1993 Circ. Res. 72 631

    [8]

    Lechleiter J, Girard S, Peralta E, Clapham D 1991 Science 252 123

    [9]

    Witkowski F X, Leon L J, Penkoske P A, Giles W R, Spano M L, Ditto W L, Winfree A T 1998 Nature 392 78

    [10]

    Yang H J, Yang J Z 2007 Phys. Rev. E 76 016206

    [11]

    Liu F C, Wang X F, Li X C, Dong L F 2007 Chin. Phys. 16 2640

    [12]

    Liu Y, Li S R, Ma J, Ying H P 2009 Chin. Phys. B 18 98

    [13]

    Deng M Y, Tang G N, Kong L J, Liu M R 2010 Acta Phys. Sin. 59 2339 (in Chinese) [邓敏艺, 唐国宁, 孔令江, 刘慕仁2010 59 2339]

    [14]

    Pan F, Li W X, Wang X Y, Tang G N 2015 Acta Phys. Sin. 64 218202 (in Chinese) [潘飞, 黎维新, 王小艳, 唐国宁2015 64 218202]

    [15]

    Pan D B, Gao X, Feng X, Pan J T, Zhang H 2016 Sci. Rep. 6 21876

    [16]

    Yuan G Y, Xu A G, Wang G R, Chen S G 2010 Europhys. Lett. 90 10013

    [17]

    Wang P Y, Xie P, Yin H W 2003 Chin. Phys. 12 674

    [18]

    Gray R A 2002 Chaos 12 941

    [19]

    Li W W, Janardhan A H, Fedorov V V, Sha Q, Schuessler R B, Efimov I R 2011 Circ. Arrhythm. Electrophysiol. 4 917

    [20]

    Zhang H, Cao Z J, Wu N J, Ying H P, Hu G 2005 Phys. Rev. Lett. 94 188301

    [21]

    Magome N, Kanaporis G, Moisan N, Tanaka K, Agladze K 2011 Tissue Eng.: Part A 17 21

    [22]

    Nattel S, Carlsson L 2006 Nat. Rev. Drug Discov. 5 1034

    [23]

    Antzelevitch C, Brugada P, Brugada J, Brugada R, Shimizu W, Gussak I, Riera A R P 2002 Circ. Res. 91 1114

    [24]

    ten-Tusscher K H W J, Panfilov A V 2006 Phys. Med. Biol. 51 6141

    [25]

    Tran D X, Sato D, Yochelis A, Weiss J N, Garfinkel A, Qu Z 2009 Phys. Rev. Lett. 102 258103

    [26]

    ten-Tusscher K H W J, Hren R, Panfilov A V 2007 Circ. Res. 100 e87

    [27]

    ten-Tusscher K H W J, Panfilov A V 2006 Am. J. Physiol. Heart Circ. Physiol. 291 H1088

    [28]

    Zhang Z S, Tranquillo J, Neplioueva V, Bursac N, Grant A O 2007 Am. J. Physiol. Heart Circ. Physiol. 292 H399

    [29]

    Osterrieder W, Noma A, Trautwein W 1980 Pflgers Arch. 386 101

    [30]

    Qu Z, Garfinkel A, Chen P S, Weiss J N 2000 Circulation 102 1664

    [31]

    ten-Tusscher K H W J 2005 Ph. D. Dissertation (Netherlands: Utrecht University)

    [32]

    Luo C H, Rudy Y 1991 Circ. Res. 68 1501

    [33]

    Hsiao P Y, Tien H C, Lo C P, Juang J M J, Wang Y H, Sung R J 2013 Appl. Clin. Genet. 6 1

  • [1] Li Qian-Yun, Bai Jing, Tang Guo-Ning. Control of spiral wave and spatiotemporal chaos in two-layer aging cardiac tissues. Acta Physica Sinica, 2021, 70(9): 098202. doi: 10.7498/aps.70.20201294
    [2] Wang Peng, Li Qian-Yun, Huang Zhi-Jing, Tang Guo-Ning. Spontaneous formation of ordered waves in chaotic neuronal network with excitory-inhibitory connections. Acta Physica Sinica, 2018, 67(17): 170501. doi: 10.7498/aps.67.20180506
    [3] Li Qian-Yun,  Huang Zhi-Jing,  Tang Guo-Ning. Eliminating spiral wave and spatiotemporal chaos in cardiac tissues by suppressing the rotation of spiral wave tip. Acta Physica Sinica, 2018, 67(24): 248201. doi: 10.7498/aps.67.20181291
    [4] Wang Xiao-Yan, Wang Peng, Li Qian-Yun, Tang Guo-Ning. Terminating spiral wave and spatiotemporal chaos in cardiac tissues by using late sodium current. Acta Physica Sinica, 2017, 66(13): 138201. doi: 10.7498/aps.66.138201
    [5] Pan Fei, Li Wei-Xin, Wang Xiao-Yan, Tang Guo-Ning. Terminating the spiral wave and spatiotemporal chaos in cardiac tissue using the low-pass filtering scheme. Acta Physica Sinica, 2015, 64(21): 218202. doi: 10.7498/aps.64.218202
    [6] Qiao Cheng-Gong, Li Wei-Heng, Tang Guo-Ning. Study on the effect of delayed recovery of extracellular potassium ion concentration on spiral wave. Acta Physica Sinica, 2014, 63(23): 238201. doi: 10.7498/aps.63.238201
    [7] Yuan Guo-Yong, Zhang Huan, Wang Guang-Rui. Spiral-wave dynamics in an excitable medium with many excitability obstacles. Acta Physica Sinica, 2013, 62(16): 160502. doi: 10.7498/aps.62.160502
    [8] Qiao Cheng-Gong, Wang Li-Li, Li Wei-Heng, Tang Guo-Ning. Potassium diffusive coupling-induced the variation of spiral wave in cardiac tissues. Acta Physica Sinica, 2013, 62(19): 198201. doi: 10.7498/aps.62.198201
    [9] Zhou Zhen-Wei, Wang Li-Li, Qiao Cheng-Gong, Chen Xing-Ji, Tian Tao-Tao, Tang Guo-Ning. Terminating spiral waves and spatiotemporal chaos in heart by synchronous repolarization. Acta Physica Sinica, 2013, 62(15): 150508. doi: 10.7498/aps.62.150508
    [10] Qian Yu. The influence of spatiotemporal modulation on spiral tip dynamics in excitable medium and its application for spiral control. Acta Physica Sinica, 2012, 61(15): 158202. doi: 10.7498/aps.61.158202
    [11] Kuang Yu-Lan, Tang Guo-Ning. Eliminate spiral wave and spatiotemporal chaos by using short-term cardiac memory. Acta Physica Sinica, 2012, 61(19): 190501. doi: 10.7498/aps.61.190501
    [12] Kuang Yu-Lan, Tang Guo-Ning. Suppressions of spiral waves and spatiotemporal chaos in cardiac tissue. Acta Physica Sinica, 2012, 61(10): 100504. doi: 10.7498/aps.61.100504
    [13] Zhu Jin-Chuan, Li Chen-Ren, Qi Jia-Yu, Ren Xu-Dong, Yue Xi-Shuang. Control and synchronization of phase-conjugate wave spatiotemporal chaos system driven by CO2 laser. Acta Physica Sinica, 2011, 60(10): 104213. doi: 10.7498/aps.60.104213
    [14] Zhong Min, Tang Guo-Ning. Suppressing spiral waves and spatiotemporal chaos in cardiac tissue by using calcium channel agonist. Acta Physica Sinica, 2010, 59(5): 3070-3076. doi: 10.7498/aps.59.3070
    [15] Zhong Min, Tang Guo-Ning. Suppressing spiral waves and spatiotemporal chaos in cardiac tissue using local feedback. Acta Physica Sinica, 2010, 59(3): 1593-1599. doi: 10.7498/aps.59.1593
    [16] Gao Ji-Hua, Xie Ling-Ling, Peng Jian-Hua. Controlling spatiotemporal chaos by speed feedback method. Acta Physica Sinica, 2009, 58(8): 5218-5223. doi: 10.7498/aps.58.5218
    [17] Li Yan, Lü Ling, Luan Ling. Lag synchronization of spatiotemporal chaos in a weighted network with ring connection. Acta Physica Sinica, 2009, 58(7): 4463-4468. doi: 10.7498/aps.58.4463
    [18] Yue Li-Juan, Shen Ke, Xu Ming-Qi. Controlling optical spatiotemporal chaos of coupled phase-conjugate map system with nonlinear feedback. Acta Physica Sinica, 2007, 56(8): 4378-4382. doi: 10.7498/aps.56.4378
    [19] Ma Jun, Pu Zhong-Sheng, Feng Wang-Jun, Li Wei-Xue. A new scheme of suppression of spiral and spatiotemporal chaos in centric field. Acta Physica Sinica, 2005, 54(10): 4602-4609. doi: 10.7498/aps.54.4602
    [20] XUE YUE-JU, FENG RU-PENG. CONTROL OF SPATIO-TEMPORAL CHAOS IN CONTINUOUS TIME COUPLED SYSTEMS BY USING ADAPTIVE FUZZY CONTROL. Acta Physica Sinica, 2001, 50(3): 440-444. doi: 10.7498/aps.50.440
Metrics
  • Abstract views:  7369
  • PDF Downloads:  238
  • Cited By: 0
Publishing process
  • Received Date:  13 June 2016
  • Accepted Date:  27 June 2016
  • Published Online:  05 October 2016

/

返回文章
返回
Baidu
map