-
Heat transportation is one of the most ubiquitous phenomenon in the mother nature. Manipulating heat flow at will is of tremendous value in industry, civil life and even military. It would be a common sense that in different materials thermal properties are different. According to this knowledge people may design thermal materials to control heat conduction. One of the most common and successful example is blanket, which has been invented for thousands of years to keep us warm in cold days and keep icecream cool in summer. However, those great inventions are not powerful enough to manipulate heat flow at will. So there are still a lot of demands for designing the so-called metamaterials which have special properties that should not exist in nature. In 2006, Leonhardt and Pendry's research group (Pendry, Schurig and Smith) independently proposed a type of optical metamaterial which is also called invisible cloak. This device is well known for bending light around an object to make it invisible. Such a significant progress soon enlightened a lot of scientists in different aspects since it offers a powerful approach to design metamaterials. The principle of invisible cloak, which is concluded as transformation optics has been applied to light waves, acoustic, seismic, elastic waves, hydrodynamics and even matter waves as they all satisfy with wave equation. Although the conduction equation which governs the process of heat conduction is totally different from wave equation, from 2008 to 2012, Fan's group and Guenneau's group established the theoretical system of transformation thermotics. Since then, many thermal metamaterials with novel thermal properties have been figured out. Therefore, a boom in transformation thermotics and thermal metamaterials has begun. In this article, we will introduce some most recent achievements in this field, including novel thermal devices, simplified experimental method, macro thermal diode based on temperature dependent transformation thermotics, and the important role that soft matters play in the experimental confirmations of thermal metamaterials. These works pave the developments in transformation mapping theory and can surely inspire more designs of thermal metamaterials. What is more, some approaches proposed in this article provide more flexibility in controlling heat flow, and it may also be useful in other fields that are sensitive to temperature gradient, such as the Seebeck effect and many other domains where transformation theory is valid.
-
Keywords:
- transformation thermotics /
- thermal metamaterial /
- soft matter
[1] Veselago V G 1968 Physics-USPEKHI 10 509
[2] Leonhardt U 2006 Science 312 1777
[3] Pendry J B, Schurig D, Smith D R 2006 Science 312 1780
[4] Alitalo P, Tretyakov S 2009 Mater. Today 12 22
[5] Padilla W J, Basov D N, Smith D R 2006 Mater. Today 9 28
[6] Zhao Q, Zhou J, Zhang F L, Lippens D 2009 Mater. Today 12 60
[7] Wood J 2008 Mater. Today 11 40
[8] Jiang W X, Chin J Y, Cui T J 2009 Mater. Today 12 26
[9] Lax M, Nelson D F 1976 Phys. Rev. B 13 1777
[10] Leonhardt U, Philbin T G 2009 Prog. Opt. 53 69
[11] Schurig D, Pendry J B, Smith D R 2006 Opt. Express 14 9794
[12] Milton G W, Briane M, Willis J R 2006 New J. Phys. 8 248
[13] Shalaev V M 2008 Science 322 384
[14] Chen H Y, Chan C T, Sheng P 2010 Nature Mater. 9 387
[15] Pendry J B, Maier S A 2012 Science 337 549
[16] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
[17] Chen H Y, Chan C T 2007 Appl. Phys. Lett. 91 183518
[18] Cummer S A, Schurig D 2007 New J. Phys. 9 45
[19] Norris A N 2008 Proc. R. Soc. Lond. A: Math. Phys. Sci. 464 2411
[20] Farhat M, Enoch S, Guenneau S, Movchan A B 2008 Phys. Rev. Lett. 101 134501
[21] Liu B, Huang J P 2009 Euro. Phys. J. Appl. Phys. 48 093901
[22] Brun M, Guenneau S, Movchan A B 2009 Appl. Phys. Lett. 94 061903
[23] Su Q, Liu B, Huang J P 2011 Front. Phys. 6 65
[24] Zhang S, Xia C G, Fang N 2011 Phys. Rev. Lett. 106 024301
[25] Parnell W J, Norris A N, Shearer T 2012 Appl. Phys. Lett. 100 171907
[26] Farhat M, Guenneau S, Enoch S 2009 Phys. Rev. Lett. 103 024301
[27] Milton G W, Nicorovici N A P 2006 Proc. R. Soc. Lond. A, Math. Phys. Sci. 462 3027
[28] Stenger N, Wilhelm M, Wegener M 2012 Phys. Rev. Lett. 108 014301
[29] Chen H Y, Yang J, Zi J, Chan C T 2009 EPL 85 24004
[30] Zhang S, Genov D A, Sun C, Zhang X 2008 Phys. Rev. Lett. 100 123002
[31] Greenleaf A, Kurylev Y, Lassas M, Uhlmann G 2008 New J. Phys. 10 115024
[32] Diatta A, Guenneau S 2011 J. Opt. 13 024012
[33] Greenleaf A, Kurylev Y, Lassas M, Leonhardt U, Uhlmann G 2012 Proc. Natl. Acad. Sci. USA 109 10169
[34] Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 25190767
[35] Chen T Y, Weng C N, Chen J S 2008 Appl. Phys. Lett. 93 114103
[36] Li J Y, Gao Y, Huang J P 2010 J. Appl. Phys. 108 074504
[37] Yu G X, Lin Y F, Zhang G Q 2011 Front. Phys. 6 70
[38] Guenneau S, Amra C, Veynante D 2012 Opt. Express 20 8207
[39] Narayana S, Sato Y 2012 Phys. Rev. Lett. 108 214303
[40] Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901
[41] Guenneau S, Amra C 2013 Opt. Express 21 6578
[42] Han T C, Yuan T, Li B W, Qiu C W 2013 Sci. Rep. 3 1593
[43] Guo Y, Jacob Z 2013 Opt. Express 21 15014
[44] Narayana S, Savo S, Sato Y 2013 Appl. Phys. Lett. 102 201904
[45] Ma Y G, Lan L, Jiang W, Sun F, He S L 2013 Npg. Asia Mater. 5 e73
[46] He X, Wu L Z 2013 Appl. Phys. Lett. 102 211912
[47] Gao Y, Huang J P 2013 EPL 104 44001
[48] Ball P 2012 Nature Mater. 11 666
[49] Shen X Y, Huang J P 2014 Int. J. Heat Mass Trans. 78 1
[50] Shen X Y, Chen Y X, Huang J P 2016 Commun. Theor. Phys. 65 375
[51] Chen Y X, Shen X Y, Huang J P 2015 Euro. Phys. J. Appl. Phys. 70 20901
[52] Zhu N Q, Shen X Y, Huang J P 2015 AIP Adv. 5 053401
[53] Han T C, Bai X, Thong T L J, Li B W, Qiu C W 2014 Adv. Mater. 26 1731
[54] Chen H S, Wu B I, Zhang B, Kong J A 2007 Phys. Rev. Lett. 99 063903
[55] Ruan Z C, Yan M, Neff C W, Qiu M 2007 Phys. Rev. Lett. 99 113903
[56] Yan M, Ruan Z C, Qiu M 2007 Phys. Rev. Lett. 99 233901
[57] Greenleaf A, Lassas M, Uhlmann G 2003 Physiol. Meas. 24 413
[58] Huang J P, Yu K W 2006 Phys. Rep. 431 87
[59] Xia T K, Hui P M, Stroud D 1990 J. Appl. Phys. 67 2736
[60] You C Y, Shin S C, Kim S Y 1997 Phys. Rev. B 55 5953
[61] Shi L H, Gao L 2008 Phys. Rev. B 77 195121
[62] Nan C W, Birringer R, Clarke D R, Gleiter H 1997 J. Appl. Phys. 81 6692
[63] Gao L, Zhou X F, Ding Y L 2007 Chem. Phys. Lett. 434 297
[64] Mackay T G, Lakhtakia A 2005 J. Opt. A: Pure Appl. Opt. 7 669
[65] Landau L D, Lifshitz E M 1984 Electrodynamics of Continuous Media (city Amsterdam: Elsevier)
[66] Zhang M, Che Z H, Chen J H, Zhao H Z, Yang L, Zhong Z Y, Lu J H 2010 J. Chem. Eng. Data 56 859
[67] Han T C, Gao D L, Thong T L J, Li B W, Qiu C W 2014 Phys. Rev. Lett. 112 054302
[68] Li Y, Shen X Y, Wu Z H, Huang J Y, Chen Y X, Ni Y S, Huang J P 2015 Phys. Rev. Lett. 115 195503
[69] Li Y, Shen X Y, Huang J P, Ni Y S 2016 Phys. Lett. A 380 1641
-
[1] Veselago V G 1968 Physics-USPEKHI 10 509
[2] Leonhardt U 2006 Science 312 1777
[3] Pendry J B, Schurig D, Smith D R 2006 Science 312 1780
[4] Alitalo P, Tretyakov S 2009 Mater. Today 12 22
[5] Padilla W J, Basov D N, Smith D R 2006 Mater. Today 9 28
[6] Zhao Q, Zhou J, Zhang F L, Lippens D 2009 Mater. Today 12 60
[7] Wood J 2008 Mater. Today 11 40
[8] Jiang W X, Chin J Y, Cui T J 2009 Mater. Today 12 26
[9] Lax M, Nelson D F 1976 Phys. Rev. B 13 1777
[10] Leonhardt U, Philbin T G 2009 Prog. Opt. 53 69
[11] Schurig D, Pendry J B, Smith D R 2006 Opt. Express 14 9794
[12] Milton G W, Briane M, Willis J R 2006 New J. Phys. 8 248
[13] Shalaev V M 2008 Science 322 384
[14] Chen H Y, Chan C T, Sheng P 2010 Nature Mater. 9 387
[15] Pendry J B, Maier S A 2012 Science 337 549
[16] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
[17] Chen H Y, Chan C T 2007 Appl. Phys. Lett. 91 183518
[18] Cummer S A, Schurig D 2007 New J. Phys. 9 45
[19] Norris A N 2008 Proc. R. Soc. Lond. A: Math. Phys. Sci. 464 2411
[20] Farhat M, Enoch S, Guenneau S, Movchan A B 2008 Phys. Rev. Lett. 101 134501
[21] Liu B, Huang J P 2009 Euro. Phys. J. Appl. Phys. 48 093901
[22] Brun M, Guenneau S, Movchan A B 2009 Appl. Phys. Lett. 94 061903
[23] Su Q, Liu B, Huang J P 2011 Front. Phys. 6 65
[24] Zhang S, Xia C G, Fang N 2011 Phys. Rev. Lett. 106 024301
[25] Parnell W J, Norris A N, Shearer T 2012 Appl. Phys. Lett. 100 171907
[26] Farhat M, Guenneau S, Enoch S 2009 Phys. Rev. Lett. 103 024301
[27] Milton G W, Nicorovici N A P 2006 Proc. R. Soc. Lond. A, Math. Phys. Sci. 462 3027
[28] Stenger N, Wilhelm M, Wegener M 2012 Phys. Rev. Lett. 108 014301
[29] Chen H Y, Yang J, Zi J, Chan C T 2009 EPL 85 24004
[30] Zhang S, Genov D A, Sun C, Zhang X 2008 Phys. Rev. Lett. 100 123002
[31] Greenleaf A, Kurylev Y, Lassas M, Uhlmann G 2008 New J. Phys. 10 115024
[32] Diatta A, Guenneau S 2011 J. Opt. 13 024012
[33] Greenleaf A, Kurylev Y, Lassas M, Leonhardt U, Uhlmann G 2012 Proc. Natl. Acad. Sci. USA 109 10169
[34] Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 25190767
[35] Chen T Y, Weng C N, Chen J S 2008 Appl. Phys. Lett. 93 114103
[36] Li J Y, Gao Y, Huang J P 2010 J. Appl. Phys. 108 074504
[37] Yu G X, Lin Y F, Zhang G Q 2011 Front. Phys. 6 70
[38] Guenneau S, Amra C, Veynante D 2012 Opt. Express 20 8207
[39] Narayana S, Sato Y 2012 Phys. Rev. Lett. 108 214303
[40] Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901
[41] Guenneau S, Amra C 2013 Opt. Express 21 6578
[42] Han T C, Yuan T, Li B W, Qiu C W 2013 Sci. Rep. 3 1593
[43] Guo Y, Jacob Z 2013 Opt. Express 21 15014
[44] Narayana S, Savo S, Sato Y 2013 Appl. Phys. Lett. 102 201904
[45] Ma Y G, Lan L, Jiang W, Sun F, He S L 2013 Npg. Asia Mater. 5 e73
[46] He X, Wu L Z 2013 Appl. Phys. Lett. 102 211912
[47] Gao Y, Huang J P 2013 EPL 104 44001
[48] Ball P 2012 Nature Mater. 11 666
[49] Shen X Y, Huang J P 2014 Int. J. Heat Mass Trans. 78 1
[50] Shen X Y, Chen Y X, Huang J P 2016 Commun. Theor. Phys. 65 375
[51] Chen Y X, Shen X Y, Huang J P 2015 Euro. Phys. J. Appl. Phys. 70 20901
[52] Zhu N Q, Shen X Y, Huang J P 2015 AIP Adv. 5 053401
[53] Han T C, Bai X, Thong T L J, Li B W, Qiu C W 2014 Adv. Mater. 26 1731
[54] Chen H S, Wu B I, Zhang B, Kong J A 2007 Phys. Rev. Lett. 99 063903
[55] Ruan Z C, Yan M, Neff C W, Qiu M 2007 Phys. Rev. Lett. 99 113903
[56] Yan M, Ruan Z C, Qiu M 2007 Phys. Rev. Lett. 99 233901
[57] Greenleaf A, Lassas M, Uhlmann G 2003 Physiol. Meas. 24 413
[58] Huang J P, Yu K W 2006 Phys. Rep. 431 87
[59] Xia T K, Hui P M, Stroud D 1990 J. Appl. Phys. 67 2736
[60] You C Y, Shin S C, Kim S Y 1997 Phys. Rev. B 55 5953
[61] Shi L H, Gao L 2008 Phys. Rev. B 77 195121
[62] Nan C W, Birringer R, Clarke D R, Gleiter H 1997 J. Appl. Phys. 81 6692
[63] Gao L, Zhou X F, Ding Y L 2007 Chem. Phys. Lett. 434 297
[64] Mackay T G, Lakhtakia A 2005 J. Opt. A: Pure Appl. Opt. 7 669
[65] Landau L D, Lifshitz E M 1984 Electrodynamics of Continuous Media (city Amsterdam: Elsevier)
[66] Zhang M, Che Z H, Chen J H, Zhao H Z, Yang L, Zhong Z Y, Lu J H 2010 J. Chem. Eng. Data 56 859
[67] Han T C, Gao D L, Thong T L J, Li B W, Qiu C W 2014 Phys. Rev. Lett. 112 054302
[68] Li Y, Shen X Y, Wu Z H, Huang J Y, Chen Y X, Ni Y S, Huang J P 2015 Phys. Rev. Lett. 115 195503
[69] Li Y, Shen X Y, Huang J P, Ni Y S 2016 Phys. Lett. A 380 1641
Catalog
Metrics
- Abstract views: 10536
- PDF Downloads: 735
- Cited By: 0