Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Relaxation behavior simulation of power lithium-ion battery in high-rate charging-discharging process

Tang Yi-Wei Ai Liang Cheng Yun Wang An-An Li Shu-Guo Jia Ming

Citation:

Relaxation behavior simulation of power lithium-ion battery in high-rate charging-discharging process

Tang Yi-Wei, Ai Liang, Cheng Yun, Wang An-An, Li Shu-Guo, Jia Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The relaxation behaviors of a power lithium-ion battery significantly affect its performance, and these properties are greatly affected by temperature. This study presents a validated electrochemical-thermal model battery model covering the conservations of charge, mass, and energy and the electrochemical reaction kinetics, and considering the effect of heat on electrochemical performance of a battery. Using this battery model, the relaxation behavior of power lithium-ion battery in high-rate charging-discharging process and the effect of difference among charge-discharge systems are investigated. It is found that ohmic polarization is the main reason for voltage change in charging-discharging process. Constant-current-constant-voltage charging mode can effectively remit ohmic polarization and then avoid changing the voltage rapidly. In the shelving process after constant-current-constant-voltage charging, voltage change is smaller and the time for it to take to reach open circuit potential is shorter than in the shelving process after constant-current charging. In charging-discharging process, the values of polarization at positive and negative electrode are almost the same. Power lithium-ion battery can be charged into more energy by constant-current-constant-voltage charging modes, meaning that it is beneficial to battery performance. Because active material particles in electrodes have certain sizes, in discharging process, there is some gradient between the surface and center of solid particle, and the electrodes each have a certain thickness, different place of electrode has a different lithium-ion concentration. In the shelving process after discharging, there is no outer current, so the gradient of lithium-ion concentration disappears due to the effect of diffusion process. The relaxation time of lithium-ion concentration in solid phase is longer than in liquid phase. The ratio between characteristic time of solid diffusion and that of liquid diffusion increases constantly near the end of the discharge, thus the polarization due to solid diffusion cannot be neglected in the whole discharging process.
      Corresponding author: Jia Ming, csulightmetals11@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51204211, 51222403), the Fundamental Research Funds for Central Universities of Central South University, China (Grant No. 2014zzts029), and the Special Foundation for Industrial Upgrading Transformation and Strengthen the Foundation of Ministry of Industry and Information Technology, China (Grant No. 0714-EMTC02-5271/6).
    [1]

    Chen Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202 (in Chinese) [程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 64 210202]

    [2]

    Scrosati B, Garche J 2010 J. Power Sources 195 2419

    [3]

    Hannan M A, Azidin F A, Mohamed A 2014 Renew. Sust. Energ. Rev. 29 135

    [4]

    Newman J, Tiedemann W 1975 AICHE J 21 25

    [5]

    Doyle M, Newman J 1995 Electrochim. Acta 40 2191

    [6]

    Li J, Cheng Y, Jia M, Tang Y W, Lin Y, Zhang Z A, Liu Y X 2014 J. Power Sources 255 130

    [7]

    Huang L, Li J Y 2015 Acta Phys. Sin. 64 108202 (in Chinese) [黄亮, 李建远 2015 64 108202]

    [8]

    Tang Y W, Jia M, Li J, Lai Y Q, Cheng Y, Liu Y X 2014 J. Electrochem. Soc. 161 E3021

    [9]

    Tang Y W, Jia M, Chen Y, Zhang K, Zhang H L, Li J 2013 Acta Phys. Sin. 62 158201 (in Chinese) [汤依伟, 贾明, 程昀, 张凯, 张红亮, 李劼 2013 62 158201]

    [10]

    Du S L, Jia M, Cheng Y, Tang Y W, Zhang H L, Ai L H, Zhang K, Lai Y Q 2015 Int. J. Them. Sci. 89 327

    [11]

    Dai Y, Cai L, White R E 2014 J. Power Sources 247 365

    [12]

    Zheng H, Liu X, Wei M 2015 Chin. Phys. B24 098801

    [13]

    Dai Y, Cai L, White R E 2013 J. Electorchem. Soc. 160 A182

    [14]

    Kang J Q, Conlisk A T, Rizzoni G 2014 J. Solid State Electrochem 18 2425

    [15]

    Nyman A, Zavalis T G, Elger R, Behm, M, Lindbergh, G 2010 J. Electrochem. Soc. 157 A1236

    [16]

    Safari M, Delacourt C 2011 J. Electrochem. Soc. 158 A562

    [17]

    Fuller T F, Doyle M, Newman J 1994 J. Electrochem. Soc. 141 982

    [18]

    Bernardi D M, Go J Y 2011 J. Power Sources 196 412

    [19]

    Reichert M, Andre D, Rösmann A, Janssen P, Bremes H G, Sauer D U, Passerini S, Winter M 2013 J. Power Sources 239 45

    [20]

    Smith K, Wang C Y 2006 J. Power Sources 160 662

    [21]

    Jin W R, Lu S G, Pang J 2011 Chin. J. Inorg. Chem. 27 1675

    [22]

    Gerver R E, Meyers J P 2011 J. Electrochem. Soc. 158 A835

    [23]

    Tang Y W, Jia M, Li J, Lai Y Q, Cheng Y, Liu Y X 2014 J. Electrochem. Soc. 161 E3021

    [24]

    Ramadass P, Haran B, Gomadam P M, White R E, Popov B N 2004 J. Electrochem. Soc. 151 A196

    [25]

    Srinivasan V, Wang C Y 2003 J. Electrochem. Soc. 150 A98

    [26]

    Bernardi D, Pawlikowski E, Newman J 1985 J. Electrochem. Soc. 132 5

    [27]

    Valoen L O, Reimers J N 2005 J. Electorchem. Soc. 152 A882

  • [1]

    Chen Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202 (in Chinese) [程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 64 210202]

    [2]

    Scrosati B, Garche J 2010 J. Power Sources 195 2419

    [3]

    Hannan M A, Azidin F A, Mohamed A 2014 Renew. Sust. Energ. Rev. 29 135

    [4]

    Newman J, Tiedemann W 1975 AICHE J 21 25

    [5]

    Doyle M, Newman J 1995 Electrochim. Acta 40 2191

    [6]

    Li J, Cheng Y, Jia M, Tang Y W, Lin Y, Zhang Z A, Liu Y X 2014 J. Power Sources 255 130

    [7]

    Huang L, Li J Y 2015 Acta Phys. Sin. 64 108202 (in Chinese) [黄亮, 李建远 2015 64 108202]

    [8]

    Tang Y W, Jia M, Li J, Lai Y Q, Cheng Y, Liu Y X 2014 J. Electrochem. Soc. 161 E3021

    [9]

    Tang Y W, Jia M, Chen Y, Zhang K, Zhang H L, Li J 2013 Acta Phys. Sin. 62 158201 (in Chinese) [汤依伟, 贾明, 程昀, 张凯, 张红亮, 李劼 2013 62 158201]

    [10]

    Du S L, Jia M, Cheng Y, Tang Y W, Zhang H L, Ai L H, Zhang K, Lai Y Q 2015 Int. J. Them. Sci. 89 327

    [11]

    Dai Y, Cai L, White R E 2014 J. Power Sources 247 365

    [12]

    Zheng H, Liu X, Wei M 2015 Chin. Phys. B24 098801

    [13]

    Dai Y, Cai L, White R E 2013 J. Electorchem. Soc. 160 A182

    [14]

    Kang J Q, Conlisk A T, Rizzoni G 2014 J. Solid State Electrochem 18 2425

    [15]

    Nyman A, Zavalis T G, Elger R, Behm, M, Lindbergh, G 2010 J. Electrochem. Soc. 157 A1236

    [16]

    Safari M, Delacourt C 2011 J. Electrochem. Soc. 158 A562

    [17]

    Fuller T F, Doyle M, Newman J 1994 J. Electrochem. Soc. 141 982

    [18]

    Bernardi D M, Go J Y 2011 J. Power Sources 196 412

    [19]

    Reichert M, Andre D, Rösmann A, Janssen P, Bremes H G, Sauer D U, Passerini S, Winter M 2013 J. Power Sources 239 45

    [20]

    Smith K, Wang C Y 2006 J. Power Sources 160 662

    [21]

    Jin W R, Lu S G, Pang J 2011 Chin. J. Inorg. Chem. 27 1675

    [22]

    Gerver R E, Meyers J P 2011 J. Electrochem. Soc. 158 A835

    [23]

    Tang Y W, Jia M, Li J, Lai Y Q, Cheng Y, Liu Y X 2014 J. Electrochem. Soc. 161 E3021

    [24]

    Ramadass P, Haran B, Gomadam P M, White R E, Popov B N 2004 J. Electrochem. Soc. 151 A196

    [25]

    Srinivasan V, Wang C Y 2003 J. Electrochem. Soc. 150 A98

    [26]

    Bernardi D, Pawlikowski E, Newman J 1985 J. Electrochem. Soc. 132 5

    [27]

    Valoen L O, Reimers J N 2005 J. Electorchem. Soc. 152 A882

  • [1] Xie Yi-Zhan, Cheng Xi-Ming. A new method to solve electrolyte diffusion equations for single particle model of lithium-ion batteries. Acta Physica Sinica, 2022, 71(4): 048201. doi: 10.7498/aps.71.20211619
    [2] A New Method to Solve the Electrolyte Diffusion Equations of Single Particle Model for Lithium-ion Batteries. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211619
    [3] Chen Yun-Tian, Wang Jing-Wei, Chen Wei-Jin, Xu Jing. Reciprocal waveguide coupled mode theory. Acta Physica Sinica, 2020, 69(15): 154206. doi: 10.7498/aps.69.20200194
    [4] Jin Xin-Xin, Jin Feng, Liu Ning, Sun Qi-Cheng. Analysis of elastic energy relaxation process for granular materials at quasi-static state. Acta Physica Sinica, 2016, 65(9): 096102. doi: 10.7498/aps.65.096102
    [5] Sun Qi-Cheng, Liu Chuan-Qi, Gordon G D Zhou. Relaxation of granular elasticity. Acta Physica Sinica, 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [6] Zhao Na, Liu Jian-She, Li Tie-Fu, Chen Wei. Progress of coupled superconducting qubits. Acta Physica Sinica, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [7] Chen Xing-Ji, Tian Tao-Tao, Zhou Zhen-Wei, Hu Yi-Bo, Tang Guo-Ning. Synchronization of two spiral waves interacting through a passive medium. Acta Physica Sinica, 2012, 61(21): 210509. doi: 10.7498/aps.61.210509
    [8] Yang Yue-Bin, Zuo Wen-Long, Bao Yan-Xiang, Liu Shu-Yu, Li Long-Fei, Zhang Jin-Xiu, Xiong Xiao-Min. Detection of a coupled vibration by mechanical resonant absorption spectra. Acta Physica Sinica, 2012, 61(20): 200509. doi: 10.7498/aps.61.200509
    [9] Zhou Zhen-Wei, Chen Xing-Ji, Tian Tao-Tao, Tang Guo-Ning. Study on the control of spiral waves in coupled excitable media. Acta Physica Sinica, 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [10] Li Qun-Hong, Yan Yu-Long, Yang Dan. Bifurcations in coupled electrical circuit systems. Acta Physica Sinica, 2012, 61(20): 200505. doi: 10.7498/aps.61.200505
    [11] Nie Tao, Liu Wei-Qiang. Study of coupled fluid and solid for a hypersonic lending edge. Acta Physica Sinica, 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [12] Chen Zhang-Yao, Bi Qin-Sheng. Bifurcations and chaos of coupled Jerk systems. Acta Physica Sinica, 2010, 59(11): 7669-7678. doi: 10.7498/aps.59.7669
    [13] Lu Min, Xu Wei-Bing, Liu Wei-Qing, Hou Chun-Ju, Liu Zhi-Yong. An atomistic simulation on melting and breaking relaxation characteristics of Ag nanorods at high temperature. Acta Physica Sinica, 2010, 59(9): 6377-6383. doi: 10.7498/aps.59.6377
    [14] Liu Yong. Phase synchronization of coupling systems. Acta Physica Sinica, 2009, 58(2): 749-755. doi: 10.7498/aps.58.749
    [15] Zhou Zheng-Cun, Zhao Hong-Ping, Gu Su-Yi, Wu Qian. Relaxation resulting from atomic defects in quenched Fe-Al alloys. Acta Physica Sinica, 2008, 57(2): 1025-1029. doi: 10.7498/aps.57.1025
    [16] Xu Feng, Liu Tang-Yan, Huang Yong-Ren. Theoretical computation and numerical simulation of the relaxation of sphere-capillary model saturated with oil and water. Acta Physica Sinica, 2008, 57(1): 550-555. doi: 10.7498/aps.57.550
    [17] Ma Xin-Guo, Tang Chao-Qun, Huang Jin-Qiu, Hu Lian-Feng, Xue Xia, Zhou Wen-Bin. First-principle calculations on the geometry and relaxation structure of anatase TiO2(101) surface. Acta Physica Sinica, 2006, 55(8): 4208-4213. doi: 10.7498/aps.55.4208
    [18] Xu Feng, Liu Tang-Yan, Huang Yong-Ren. Theoretical description and numerical computation of the relaxation of multi-spin system in the presence of an RF field. Acta Physica Sinica, 2006, 55(6): 3054-3059. doi: 10.7498/aps.55.3054
    [19] Xu Feng, Huang Yong-Ren. . Acta Physica Sinica, 2002, 51(6): 1371-1376. doi: 10.7498/aps.51.1371
    [20] . Acta Physica Sinica, 2002, 51(2): 415-419. doi: 10.7498/aps.51.415
Metrics
  • Abstract views:  8593
  • PDF Downloads:  673
  • Cited By: 0
Publishing process
  • Received Date:  12 October 2015
  • Accepted Date:  08 December 2015
  • Published Online:  05 March 2016

/

返回文章
返回
Baidu
map