Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tunable array beam splitter with different domain-etching depth based on MgO-doped lithium niobate crystal

Tong Man Fan Tian-Wei Chen Yun-Lin

Citation:

Tunable array beam splitter with different domain-etching depth based on MgO-doped lithium niobate crystal

Tong Man, Fan Tian-Wei, Chen Yun-Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The Talbot effect is a self-imaging phenomenon of near-field diffraction. When a plane wave is incident on a periodic diffraction grating, the image of the grating is repeated at regular distances away from the grating plane. A Talbot array illuminator is a device that splits singular light beam into an array of beams with periodical optical intensity based on Talbot effect. LiNbO3 (LN) crystal is a kind of practicable material for a Talbot array illuminator due to its perfect optical characteristics. MgO-doped LiNbO3 (MgLN) crystal shows shorter absorption edge wavelength and higher resistance to photorefractive damage than LN. Up to now, the usefulness and simplicity of Talbot effect have still aroused the interest of many scholars.In the conventional method, a Talbot array illuminator is fabricated by using high external electric field to modulate the phase difference. However, essentially, high external electric field restricts the Talbot array illuminator to applications in optical integration and optical micro structure devices. Now we are looking forward to a new way which avoids using high external electric field.In this paper, we systematically study the two-dimensional (2D) hexagonal tunable array beam splitter, which is fabricated by domain-etching in MgLN crystal, and its fractional Talbot effect. The self-imaging phenomenon caused by Talbot effect in the Fresnel field for this phase array coherently illuminated is theoretically analyzed according to Fresnel diffraction theory. We numerically simulate the light intensity distributions of Talbot diffraction image under different values of Talbot coefficient and different values of domain-etching depth. The simulation results show that can change the array period and the structure distribution of the fractional Talbot diffraction image, and the domain-etching depth can modulate the light intensity distribution of diffraction image. Based on the numerical simulation results, the 2D hexagonal array beam splitters are fabricated with different values of domain-etching depth. The fractional Talbot diffraction images of array splitters are obtained at different values of through the optical experiments. The results show that domain-etching depth can effectively modulate the intensity distribution of diffraction image, becoming a tunable array beam splitter successfully. The experimental results agree well with the simulation results. The theoretical and experimental results show that the optimal self-image visibility can be obtained at a Talbot coefficient of 0.5 and a domain-etching depth of 0.39 m, while the duty cycle is 52%. Moreover, a good self-image pattern is also observed under thinner domain-etching depth, which is beneficial to optical integration and micro optical devices.
      Corresponding author: Chen Yun-Lin, ylchen@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61178052) and the Ph. D. Programs Foundation of Ministry of Education of China (Grant No. 20130009110008).
    [1]

    Talbot H F 1836 The London and Edinburgh Philosophical Magazine and Journal of Science 9 401

    [2]

    Zhou C H, Stankovic S, Denz C, Tschudi T 1999 Opt. Commun. 161 209

    [3]

    Cohen J L, Dubetsky B, Berman P R, Cohen J L, Dubetsky B, Berman P R 1999 Phys. Rev. A 60 3982

    [4]

    Kohno T, Suzuki S, Shimizu K 2007 Phys. Rev. A 76 053624

    [5]

    Kung H L, Bhatnagar A, Miller D A B 2001 Opt. Lett. 26 1645

    [6]

    Takahashi H, Oda K, Toba H 1996 J. Lightwave Technol. 14 1097

    [7]

    Mawst L J, Botez D, Roth T J, Simmons W W, Peterson G, Jansen M, Wilcox J Z, Yang J J 1989 Electron. Lett. 25 365

    [8]

    Lei Y H, Liu X, Guo J C, Zhao Z G, Niu H B 2011 Chin. Phys. B 20 042901

    [9]

    Wang Z L, Gao K, Chen J, Ge X, Zhu P P, Tian Y C, Wu Z Y 2012 Chin. Phys. B 21 118703

    [10]

    Wen M W, Yang X W, Wang Z S 2015 Acta Phys. Sin. 64 114102 (in Chinese) [闻铭武, 杨笑微, 王占山 2015 64 114102]

    [11]

    Liu X S, Li E R, Zhu P P, et al. 2010 Chin. Phys. B 19 040701

    [12]

    Chen Y L, Guo J, Lou C B 2004 J. Crystal Growth 263 427

    [13]

    Chen Y L, Lou C, Xu J, Chen S L, Kong Y F, Zhang G Y, Wen J P 2003 J. Appl. Phys. 94 3350

    [14]

    Paturzo M, De Natale P, de Nicola S 2006 Opt. Lett. 31 3164

    [15]

    Wen J, Zhang Y, Zhu S N, Xiao M 2011 J. Opt. Soc. Am. B 28 275

    [16]

    Li G H, Jiang H L, Xue X Y 2011 Chin. Phys. B 20 064201

    [17]

    Chen Z, Liu D, Zhang Y, Wen J, Zhu S N, Xiao M 2012 Opt. Lett. 37 689

    [18]

    Liu D, Zhang Y, Chen Z, Wen J, Xiao M 2012 J. Opt. Soc. Am. B 29 3325

    [19]

    Fan T W, Chen Y L, Zhang J H 2013 Acta Phys. Sin. 62 094216 (in Chinese) [范天伟, 陈云琳, 张进宏 2013 62 094216]

    [20]

    Li J G, Chen Y L, Zhang J H 2012 Acta Phys. Sin. 61 124210 (in Chinese) [李建光, 陈云琳, 张进宏 2012 61 124210]

    [21]

    Zhang J H, Chen Y L 2014 Acta Opt. Sin. 34 32 (in Chinese) [张进宏, 陈云琳 2014 光学学报 34 32]

    [22]

    Capmany J, Fernndez-Pousa C R, Diguez E 2003 Appl. Phys. Lett. 83 5145

    [23]

    Grilli S, Ferraro P, de Natale P 2005 Appl. Phys. Lett. 87 233 106

    [24]

    Fan T W, Chen Y L 2014 Acta Opt. Sin. 34 259 (in Chinese) [范天伟, 陈云琳 2014 光学学报 34 259]

    [25]

    Qin Y, Zhang J, Yao W, Wang C, Zhang S 2015 J. Am. Ceram. Soc. 98 1027

    [26]

    Boes A, Steigerwald H, Crasto T, Wade S A, Limboeck T, Soergel E, Mitchell A 2014 Appl. Phys. B 115 577

    [27]

    Chen Y, Liu S W, Wang D, Chen T, Xiao M 2007 Appl. Opt. 46 7693

    [28]

    Chen Y, Lou C, Xu J 2003 J. Appl. Phys. 94 3350

  • [1]

    Talbot H F 1836 The London and Edinburgh Philosophical Magazine and Journal of Science 9 401

    [2]

    Zhou C H, Stankovic S, Denz C, Tschudi T 1999 Opt. Commun. 161 209

    [3]

    Cohen J L, Dubetsky B, Berman P R, Cohen J L, Dubetsky B, Berman P R 1999 Phys. Rev. A 60 3982

    [4]

    Kohno T, Suzuki S, Shimizu K 2007 Phys. Rev. A 76 053624

    [5]

    Kung H L, Bhatnagar A, Miller D A B 2001 Opt. Lett. 26 1645

    [6]

    Takahashi H, Oda K, Toba H 1996 J. Lightwave Technol. 14 1097

    [7]

    Mawst L J, Botez D, Roth T J, Simmons W W, Peterson G, Jansen M, Wilcox J Z, Yang J J 1989 Electron. Lett. 25 365

    [8]

    Lei Y H, Liu X, Guo J C, Zhao Z G, Niu H B 2011 Chin. Phys. B 20 042901

    [9]

    Wang Z L, Gao K, Chen J, Ge X, Zhu P P, Tian Y C, Wu Z Y 2012 Chin. Phys. B 21 118703

    [10]

    Wen M W, Yang X W, Wang Z S 2015 Acta Phys. Sin. 64 114102 (in Chinese) [闻铭武, 杨笑微, 王占山 2015 64 114102]

    [11]

    Liu X S, Li E R, Zhu P P, et al. 2010 Chin. Phys. B 19 040701

    [12]

    Chen Y L, Guo J, Lou C B 2004 J. Crystal Growth 263 427

    [13]

    Chen Y L, Lou C, Xu J, Chen S L, Kong Y F, Zhang G Y, Wen J P 2003 J. Appl. Phys. 94 3350

    [14]

    Paturzo M, De Natale P, de Nicola S 2006 Opt. Lett. 31 3164

    [15]

    Wen J, Zhang Y, Zhu S N, Xiao M 2011 J. Opt. Soc. Am. B 28 275

    [16]

    Li G H, Jiang H L, Xue X Y 2011 Chin. Phys. B 20 064201

    [17]

    Chen Z, Liu D, Zhang Y, Wen J, Zhu S N, Xiao M 2012 Opt. Lett. 37 689

    [18]

    Liu D, Zhang Y, Chen Z, Wen J, Xiao M 2012 J. Opt. Soc. Am. B 29 3325

    [19]

    Fan T W, Chen Y L, Zhang J H 2013 Acta Phys. Sin. 62 094216 (in Chinese) [范天伟, 陈云琳, 张进宏 2013 62 094216]

    [20]

    Li J G, Chen Y L, Zhang J H 2012 Acta Phys. Sin. 61 124210 (in Chinese) [李建光, 陈云琳, 张进宏 2012 61 124210]

    [21]

    Zhang J H, Chen Y L 2014 Acta Opt. Sin. 34 32 (in Chinese) [张进宏, 陈云琳 2014 光学学报 34 32]

    [22]

    Capmany J, Fernndez-Pousa C R, Diguez E 2003 Appl. Phys. Lett. 83 5145

    [23]

    Grilli S, Ferraro P, de Natale P 2005 Appl. Phys. Lett. 87 233 106

    [24]

    Fan T W, Chen Y L 2014 Acta Opt. Sin. 34 259 (in Chinese) [范天伟, 陈云琳 2014 光学学报 34 259]

    [25]

    Qin Y, Zhang J, Yao W, Wang C, Zhang S 2015 J. Am. Ceram. Soc. 98 1027

    [26]

    Boes A, Steigerwald H, Crasto T, Wade S A, Limboeck T, Soergel E, Mitchell A 2014 Appl. Phys. B 115 577

    [27]

    Chen Y, Liu S W, Wang D, Chen T, Xiao M 2007 Appl. Opt. 46 7693

    [28]

    Chen Y, Lou C, Xu J 2003 J. Appl. Phys. 94 3350

  • [1] Luo Ya, Zhang Yun, Liang Jin-Ling, Liu Lin-Feng. First-principles study of Cu:Fe:Mg:LiNbO3 crystals. Acta Physica Sinica, 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [2] Yang Zhe-Ning, Yue Yang-Yang, Hong Xu-Hao, Zhao Rui-Zhi, Lu Rong-Er, Feng Xia, Xu Ya-Guang, Yuan Xu-Dong, Zhang Chao, Qin Yi-Qiang, Zhu Yong-Yuan. Realizing Talbot effect of circular grating with conformal transformation. Acta Physica Sinica, 2020, 69(3): 034201. doi: 10.7498/aps.69.20191340
    [3] Fan Tian-Wei, Chen Yun-Lin, Zhang Jin-Hong. A study of two-dimensional hexagonal phase array grating in MgO:LN based on the Talbot effect. Acta Physica Sinica, 2013, 62(9): 094216. doi: 10.7498/aps.62.094216
    [4] Shi Li-Hong, Yan Wen-Bo, Shen Xu-Nan, Chen Gui-Feng, Chen Hong-Jian, Qiao Hui-Bin, Jia Fang-Fang, Lin Ai-Diao. Composition and temperature dependence of the light-induced scattering in Fe-doped lithium niobate. Acta Physica Sinica, 2012, 61(23): 234207. doi: 10.7498/aps.61.234207
    [5] Zhou Bo, Chen Yun-Lin, Li Yuan-An, Li Hai-Wei. The theoretical study and numerical simulation of the tunable two-dimensional hexagonal phase array based on Talbot effect. Acta Physica Sinica, 2010, 59(3): 1816-1822. doi: 10.7498/aps.59.1816
    [6] Chen Bo, Zhu Pei_Ping, Liu Yi-Jin, Wang Jun-Yue, Yuan Qing_Xi, Huang Wan_Xia, Ming Hai, Wu Zi-Yu. Theory and method of X_ray grating phase contrast imaging. Acta Physica Sinica, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [7] Magneto-photorefractive effect in lithium niobate crystals. Acta Physica Sinica, 2007, 56(12): 7015-7022. doi: 10.7498/aps.56.7015
    [8] Wu Bo, Cai Shuang-Shuang, Shen Jian-Wei, Shen Yong-Hang. Widely tunable optical parametric oscillators base on periodically poled MgO doped LiNbO3. Acta Physica Sinica, 2007, 56(5): 2684-2688. doi: 10.7498/aps.56.2684
    [9] Yan Wei-Guo, Chen Yun-Lin, Wang Dong-Dong, Guo Juan, Zhang Guang-Yin. Research on the submicron domain inversion structure of MgO:LiNbO3. Acta Physica Sinica, 2006, 55(11): 5855-5858. doi: 10.7498/aps.55.5855
    [10] Wang Huai-Sheng. Talbot effect of a grating under chirped ultrashort pulsed laser illumination. Acta Physica Sinica, 2005, 54(12): 5688-5691. doi: 10.7498/aps.54.5688
    [11] Yao Jiang-Hong, Chen Ya-Hui, Yan Bo-Xia, Deng Hao-Liang, Kong Yong-Fa, Chen Shao-Lin, Xu Jing-Jun, Zhang Guang-Yin. Submicron domain patterning in LiNbO3 doped MgO*. Acta Physica Sinica, 2004, 53(12): 4369-4372. doi: 10.7498/aps.53.4369
    [12] Wang Hong-Cheng, Wang Xiao-Sheng, She Wei-Long, Ren Guo-Bin, Wang Zhi, Lou Shu-Qin, Jian Shui-Sheng. Effect of spatial phase modulation on propagation of photovoltaic spatial solitons. Acta Physica Sinica, 2004, 53(8): 2595-2599. doi: 10.7498/aps.53.2595
    [13] Yao Jiang-Hong, Chen Ya-Hui, Xu Jing-Jun, Zhang Guang-Yin, Zhu Sheng-Xing. . Acta Physica Sinica, 2002, 51(1): 192-196. doi: 10.7498/aps.51.192
    [14] Miao Run-Cai, Ye Qing, Shen Chang-Yu, Teng Xiao-Li. . Acta Physica Sinica, 2002, 51(9): 1927-1932. doi: 10.7498/aps.51.1927
    [15] WANG JIN, YANG KUN, JIN CHAN. A STUDY ON THE STRUCTURE OF THE CRYSTAL LiNbO3:MgO. Acta Physica Sinica, 1999, 48(6): 1103-1106. doi: 10.7498/aps.48.1103
    [16] LIU JIAN-JUN, ZHANG WAN-LIN, ZHANG GUANG-YIN. ANALYSIS OF DEFECT STRUCTURE IN Mg-DOPED LiNbO3 CRYSTAL. Acta Physica Sinica, 1996, 45(11): 1852-1858. doi: 10.7498/aps.45.1852
    [17] WU ZHONG-KANG, ZHANG JIA-MIN, LIU SI-MIN, WANG HUA-FU, ZHANG GUANG-YIN, LU YONG-BIN, XU LIANG-YING, XU YU-HENG. LASER-INDUCED DAMAGE IN LiNbO3:Fe. Acta Physica Sinica, 1987, 36(1): 24-28. doi: 10.7498/aps.36.24
    [18] YANG CUI-YING, FENG GUO-GANG, ZHOU YU-QING, TANG DI-SHENG. SPACE GROUP DETERMINATION OF Li2O·3Nb2O5 BY CONVERGENT BEAM ELECTRON DIFFRACTION. Acta Physica Sinica, 1984, 33(11): 1586-1588. doi: 10.7498/aps.33.1586
    [19] Zhong Ji-guo, Xu Guan-feng, Wang Ting-fu, Zhang Chun-yu, Lü Yu-cai, Lü Chang-qing, Chen Jia-rong. THE GROWTH AND THE FREQUENCY DOUBLING CHARACTERS OF HEAVILY DOPED Mg:LiNbO3 CRYSTALS. Acta Physica Sinica, 1983, 32(6): 795-798. doi: 10.7498/aps.32.795
    [20] WANG YE-NING, CHU JING-SUNG, TAN YUN-PENG. THE STUDY OF SHG IN THE POLYDOMAIN STRIAE REGION OF LiNbO3 SINGLE CRYSTAL. Acta Physica Sinica, 1980, 29(12): 1629-1635. doi: 10.7498/aps.29.1629
Metrics
  • Abstract views:  6340
  • PDF Downloads:  154
  • Cited By: 0
Publishing process
  • Received Date:  03 July 2015
  • Accepted Date:  28 August 2015
  • Published Online:  05 January 2016

/

返回文章
返回
Baidu
map