-
The slow light technology of the rectangle signal propagating in erbium-doped fiber (EDF) has potential applications in the fields of all optical communication and optical fiber sensing. The method of using harmonics fractional delay to evaluate the slow/fast light of rectangle signal propagating in the EDF is proposed, and the characteristics of phase delay for fundamental and high order harmonics components are analyzed for the first time based on the rate equations and the theory of the coherent population oscillations (CPO). We experimentally demonstrate the dependences of fundamental fractional delay on input power and optical gain. The maximum fractional delay 20% is obtained when the input power is about 8 mW without pump. The negative fractional delay-20% is also achieved and it will increase with the rising of the optical gain. The Nth-order fractional delays (N=1, 3, 5, 7) of rectangle signal propagating in EDF without pump are investigated. Their maximum fractional delays are all about 0.07 and the corresponding fundamental modulation frequencies are 22, 7, 5 and 3 Hz, respectively. What is more, the Nth-order fractional delays (N=1, 3, 5, 7) with pump are also investigated. Their maximum fractional delays are all about-0.135 and the corresponding fundamental modulation frequencies are 175, 58, 35 and 25 Hz, respectively. The experiments indicate that the maximum Nth-order fractional delays are equal and they will be achieved at the frequency f/N (the fundamental harmonic fractional delay is maximum at the modulation frequency f). The results show good agreement with CPO and the frequency is also located in the spectral burning hole.
-
Keywords:
- slow and fast light /
- harmonics fractional delay /
- coherence population oscillations /
- erbium doped fiber
[1] Wang X X, Sun J X, Sun Y H, Li A J, Chen Y, Zhang X J, Kang Z H, Wang L 2015 Chin. Phys. B 24 074204
[2] Wang N, Zhang Y D, Wang H, Tian H, Qiu W, Wang J F, Yuan P 2010 Chin. Phys. B 19 014216
[3] Zhao Y, Zhao H W 2009 Opt. Laser Technol. 41 517
[4] Pant R, Byrnes A, Christopher G 2012 Opt. Lett. 37 969
[5] Zheng D, Pan W 2011 Acta Phys. Sin. 60 064210 (in Chinese) [郑狄, 潘炜 2011 60 064210]
[6] Sharping J E, Okawachi Y, Gaeta A L 2005 Opt. Express 13 6092
[7] Zhang J P, Hernandez G, Zhu Y F 2008 Opt. Lett. 33 46
[8] Zhu N, Wang Y, Ren Q, Zhu L, Yuan M, An G 2014 Opt. Laser Technol. 57 154
[9] Schweinsberg A, Lepeshkin N N, Bigelow M S, Boyd R W, Jarabo S 2006 Europhys. Lett. 73 218
[10] Bigelow M S, Lepeshkin N N, Shin H, Boyd R W 2006 J. Phys. Condens. Matter. 18 3117
[11] Shin H, Schweinsberg A, Gehring G, Schwertz K, Chang H J, Boyd R W, Park Q H 2007 Opt. Lett. 32 906
[12] Bigelow M S, Lepeshkin N N, Boyd R W 2003 Phys. Rev. Lett. 90 113903
[13] Melle S, Calderón O G, Carreño F, Cabrera E, Antón M A, Jarabo S 2007 Opt. Commun. 279 53
[14] Calderón O G, Melle S, Antón M A, Carreño F, Yáñez F A, Granado E C 2008 Phys. Rev. A 78 053812
[15] Yáñez F A, Calderón O G, Melle S 2010 J. Opt. 12 104002
[16] Zhang Y D, Qiu W, Ye J B, Wang N Wang J F, Tian H 2008 Opt. Commun. 281 2633
[17] Qiu W, Zhang Y D, Ye J B, Wang N 2008 Appl. Opt. 47 1781
[18] Ye J B, Zhang Y D, Qiu W, Xu H W 2008 Chin. J. Lasers 35 563 (in Chinese) [叶建波, 掌蕴东, 邱巍, 徐焕文 2008 中国激光 35 563]
[19] Qiu W, Ma Y C, L P, Liu D, Xu X J, Zhang C H 2012 Acta Phys. Sin. 61 094204 (in Chinese) [邱巍, 马英驰, 吕品, 刘典, 徐晓娟, 张程华 2012 61 094204]
[20] Qiu W, Gao B, Lin P, Zhou J T, Li J, Jiang Q L, L P, Ma Y C 2013 Acta Phys. Sin. 62 214205 (in Chinese) [邱巍, 高波, 林鹏, 周婧婷, 李佳, 蒋秋莉, 吕品, 马英驰 2013 62 214205]
[21] Novak S, Moesle A 2002 J. Lightwave Technol. 20 975
[22] Wang F, Wu C Q, Wang Z, Liu G D, Sun Z C 2014 Chin. Phys. Lett. 31 034207
[23] Wang F, Wu C Q, Wang Z, Mao Y Y, Sun Z C 2013 Proc. SPIE 9043 Beijing, November 11-15, 2013 p1
[24] Wang F, Wu C Q, Wang Z, Sun Z C, Mao Y Y, Liu L L, Li Q 2015 Opt. Commun. 352 96
-
[1] Wang X X, Sun J X, Sun Y H, Li A J, Chen Y, Zhang X J, Kang Z H, Wang L 2015 Chin. Phys. B 24 074204
[2] Wang N, Zhang Y D, Wang H, Tian H, Qiu W, Wang J F, Yuan P 2010 Chin. Phys. B 19 014216
[3] Zhao Y, Zhao H W 2009 Opt. Laser Technol. 41 517
[4] Pant R, Byrnes A, Christopher G 2012 Opt. Lett. 37 969
[5] Zheng D, Pan W 2011 Acta Phys. Sin. 60 064210 (in Chinese) [郑狄, 潘炜 2011 60 064210]
[6] Sharping J E, Okawachi Y, Gaeta A L 2005 Opt. Express 13 6092
[7] Zhang J P, Hernandez G, Zhu Y F 2008 Opt. Lett. 33 46
[8] Zhu N, Wang Y, Ren Q, Zhu L, Yuan M, An G 2014 Opt. Laser Technol. 57 154
[9] Schweinsberg A, Lepeshkin N N, Bigelow M S, Boyd R W, Jarabo S 2006 Europhys. Lett. 73 218
[10] Bigelow M S, Lepeshkin N N, Shin H, Boyd R W 2006 J. Phys. Condens. Matter. 18 3117
[11] Shin H, Schweinsberg A, Gehring G, Schwertz K, Chang H J, Boyd R W, Park Q H 2007 Opt. Lett. 32 906
[12] Bigelow M S, Lepeshkin N N, Boyd R W 2003 Phys. Rev. Lett. 90 113903
[13] Melle S, Calderón O G, Carreño F, Cabrera E, Antón M A, Jarabo S 2007 Opt. Commun. 279 53
[14] Calderón O G, Melle S, Antón M A, Carreño F, Yáñez F A, Granado E C 2008 Phys. Rev. A 78 053812
[15] Yáñez F A, Calderón O G, Melle S 2010 J. Opt. 12 104002
[16] Zhang Y D, Qiu W, Ye J B, Wang N Wang J F, Tian H 2008 Opt. Commun. 281 2633
[17] Qiu W, Zhang Y D, Ye J B, Wang N 2008 Appl. Opt. 47 1781
[18] Ye J B, Zhang Y D, Qiu W, Xu H W 2008 Chin. J. Lasers 35 563 (in Chinese) [叶建波, 掌蕴东, 邱巍, 徐焕文 2008 中国激光 35 563]
[19] Qiu W, Ma Y C, L P, Liu D, Xu X J, Zhang C H 2012 Acta Phys. Sin. 61 094204 (in Chinese) [邱巍, 马英驰, 吕品, 刘典, 徐晓娟, 张程华 2012 61 094204]
[20] Qiu W, Gao B, Lin P, Zhou J T, Li J, Jiang Q L, L P, Ma Y C 2013 Acta Phys. Sin. 62 214205 (in Chinese) [邱巍, 高波, 林鹏, 周婧婷, 李佳, 蒋秋莉, 吕品, 马英驰 2013 62 214205]
[21] Novak S, Moesle A 2002 J. Lightwave Technol. 20 975
[22] Wang F, Wu C Q, Wang Z, Liu G D, Sun Z C 2014 Chin. Phys. Lett. 31 034207
[23] Wang F, Wu C Q, Wang Z, Mao Y Y, Sun Z C 2013 Proc. SPIE 9043 Beijing, November 11-15, 2013 p1
[24] Wang F, Wu C Q, Wang Z, Sun Z C, Mao Y Y, Liu L L, Li Q 2015 Opt. Commun. 352 96
Catalog
Metrics
- Abstract views: 6166
- PDF Downloads: 125
- Cited By: 0