Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamics of the particle on a catenoid and the quantization of the constrained system in the extended space

Xun Da-Mao Ouyang Tao Tan Rong-Ri Liu Hui-Xuan

Citation:

Dynamics of the particle on a catenoid and the quantization of the constrained system in the extended space

Xun Da-Mao, Ouyang Tao, Tan Rong-Ri, Liu Hui-Xuan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • There are two approaches to investigating the quantum mechanics for a particle constrained on a curved hypersurface, namely the Schrödinger formalism and the Dirac theory.#br#The Schrödinger formalism utilizes the confining potential technique to lead to a unique form of geometric kinetic energy T that contains the geometric potential VS and the geometric momentum p,#br#T=-ħ2/(2m)▽2+VS=-ħ2/(2m)[▽2+(M2-K)],p=-iħ(▽2+Mn),#br#where ▽2 is the gradient operator on the two-dimensional surface. Both the kinetic energy and momentum are geometric invariants. The geometric potential has been experimentally confirmed in two systems.#br#The Dirac's canonical quantization procedure assumes that the fundamental quantum conditions involve only the canonical position x and momentum p, which are in general given by#br#[xi,xj]=iħÂij,[pi,pj]=iħΩij,[xi,pj]=iħΘij#br#where Âij, Ωij, and Θijare all antisymmetric tensors. It does not always produce a unique form of momentum or Hamiltonian after quantization. An evident step is to further introduce more commutation relations than the fundamental ones, and what we are going to do is to add those between Hamiltonian and positions x, and between Hamiltonian and momenta p, i.e.,#br#[x,Ĥ]=iħÔ({x,HC}c) and [p,Ĥ]=iħÔ({p,HC}c)#br#where {f,g}c denotes the Poisson or Dirac bracket in classical mechanics, and Ô({f,g}c) means a construction of operator based on the resulting {f,g}c, and in general we have [f,ĝ]≠Ô({f,g}c). The association between these two sets of relations means that the operators {x,p,H must be simultaneously quantized. This is the basic framework of the so-called enlarged canonical quantization scheme.#br#For particles constrained on the minimum surface, momentum and kinetic energy are assumed to be dependent on purely intrinsic geometric quantity. Whether the intrinsic geometry offers a proper framework for the canonical quantization scheme is then an interesting issue. In the present paper, we take the catenoid to find whether the quantum theory can be established satisfactorily. Results show that the theory is not self-consistent. In contrast, in the threedimensional Euclidean space, the geometric momentum and geometric potential are then in agreement with those given by the Schrödinger theory.
      Corresponding author: Xun Da-Mao, damao65@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11447209), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61404062), the Fund for Less Developed Regions of the National Natural Science Foundation of China (Grant No. 11564015), and the Doctoral Fund of Jiangxi Science and Technology Normal University, China (Grant No. 3000990106).
    [1]

    Jensen H, Koppe H 1971 Ann. Phys. (N.Y.) 63 586

    [2]

    da Costa R C T 1981 Phys. Rev. A 23 1982

    [3]

    Ferrari G, Cuoghi G 2008 Phys. Rev. Lett. 100 230403

    [4]

    Liu Q H 2013 J. Phys. Soc. Jpn. 82 104002

    [5]

    Liu Q H, Tong C L, Lai M M 2007 J. Phys.: Math. Theor. 40 4161

    [6]

    Liu Q H, Tang L H, Xun D M 2011 Phys. Rev. A 84 042101

    [7]

    Liu Q H 2014 Phys. Lett. A 378 785

    [8]

    Dirac P A M 1950 Can. J. Math. 2 129

    [9]

    Dirac P A M 1964 Lectures on Quantum Mechanics (New York: Yeshiva University) p40

    [10]

    Dirac P A M 1967 The Principles of Quantum Mechanics (Vol. 4) (Oxford: Oxford University Press) p114

    [11]

    Kleinert H, Shabanov S V 1997 Phys. Lett. A 232 327

    [12]

    Liu Q H 2013 J. Math. Phys. 54 122113

    [13]

    Dirac P A M 1925 Proc. R. Soc. London Ser. A 109 642

    [14]

    Szameit A, Dreisow F, Heinrich M, Keil R, Nolte S, Tnnermann A, Longhi S 2010 Phys. Rev. Lett. 104 150403

    [15]

    Onoe J, Ito T, Shima H, Yoshioka H, Kimura S 2012 Epl-Europhys. Lett. 98 27001

    [16]

    Xun D M, Liu Q H 2014 Ann. Phys. (N.Y.) 341 132

    [17]

    Xun D M, Liu Q H 2013 Int. J. Geom. Methods M. 10 1220031

    [18]

    Zhang Z S, Xiao S F, Xun D M, Liu Q H 2015 Commun. Theor. Phys. 63 19

    [19]

    Xun D M, Liu Q H, Zhu X M 2013 Ann. Phys. (N.Y.) 338 123

    [20]

    Chen W H 1999 The Elementary Differential Geometry(Beijing: Beijing University Press) pp121-123 (in Chinese) [陈维桓 1999 微分几何初步 (北京: 北京大学出版社) 第121–123页]

    [21]

    Miao Y G 1993 Acta Phys. Sin. 42 536 (in Chinese) [缪炎刚 1993 42 536]

    [22]

    Miao Y G, Liu Y Y 1993 Chin. Phys. Lett. 10 5

  • [1]

    Jensen H, Koppe H 1971 Ann. Phys. (N.Y.) 63 586

    [2]

    da Costa R C T 1981 Phys. Rev. A 23 1982

    [3]

    Ferrari G, Cuoghi G 2008 Phys. Rev. Lett. 100 230403

    [4]

    Liu Q H 2013 J. Phys. Soc. Jpn. 82 104002

    [5]

    Liu Q H, Tong C L, Lai M M 2007 J. Phys.: Math. Theor. 40 4161

    [6]

    Liu Q H, Tang L H, Xun D M 2011 Phys. Rev. A 84 042101

    [7]

    Liu Q H 2014 Phys. Lett. A 378 785

    [8]

    Dirac P A M 1950 Can. J. Math. 2 129

    [9]

    Dirac P A M 1964 Lectures on Quantum Mechanics (New York: Yeshiva University) p40

    [10]

    Dirac P A M 1967 The Principles of Quantum Mechanics (Vol. 4) (Oxford: Oxford University Press) p114

    [11]

    Kleinert H, Shabanov S V 1997 Phys. Lett. A 232 327

    [12]

    Liu Q H 2013 J. Math. Phys. 54 122113

    [13]

    Dirac P A M 1925 Proc. R. Soc. London Ser. A 109 642

    [14]

    Szameit A, Dreisow F, Heinrich M, Keil R, Nolte S, Tnnermann A, Longhi S 2010 Phys. Rev. Lett. 104 150403

    [15]

    Onoe J, Ito T, Shima H, Yoshioka H, Kimura S 2012 Epl-Europhys. Lett. 98 27001

    [16]

    Xun D M, Liu Q H 2014 Ann. Phys. (N.Y.) 341 132

    [17]

    Xun D M, Liu Q H 2013 Int. J. Geom. Methods M. 10 1220031

    [18]

    Zhang Z S, Xiao S F, Xun D M, Liu Q H 2015 Commun. Theor. Phys. 63 19

    [19]

    Xun D M, Liu Q H, Zhu X M 2013 Ann. Phys. (N.Y.) 338 123

    [20]

    Chen W H 1999 The Elementary Differential Geometry(Beijing: Beijing University Press) pp121-123 (in Chinese) [陈维桓 1999 微分几何初步 (北京: 北京大学出版社) 第121–123页]

    [21]

    Miao Y G 1993 Acta Phys. Sin. 42 536 (in Chinese) [缪炎刚 1993 42 536]

    [22]

    Miao Y G, Liu Y Y 1993 Chin. Phys. Lett. 10 5

  • [1] Liu Quan-Hui,  Zhang Meng-Nan,  Xiao Shi-Fa,  Xun Da-Mao. Geometric momentum distribution for three-dimensional isotropic hormonic oscillator. Acta Physica Sinica, 2019, 68(1): 010301. doi: 10.7498/aps.68.20181634
    [2] Cheng Jing, Shan Chuan-Jia, Liu Ji-Bing, Huang Yan-Xia, Liu Tang-Kun. Geometric quantum discord in Tavis-Cummings model. Acta Physica Sinica, 2018, 67(11): 110301. doi: 10.7498/aps.67.20172699
    [3] Wu Reng-Lai, Xiao Shi-Fa, Xue Hong-Jie, Quan Jun. Quantization of plasmon in two-dimensional square quantum dot system. Acta Physica Sinica, 2017, 66(22): 227301. doi: 10.7498/aps.66.227301
    [4] Rao Huang-Yun, Liu Yi-Bao, Jiang Yan-Yan, Guo Li-Ping, Wang Zi-Sheng. Geometric quantum phase for three-level mixed state. Acta Physica Sinica, 2012, 61(2): 020302. doi: 10.7498/aps.61.020302
    [5] Li Zun-Mao, Xiong Zhuang, Dai Li-Li. Calculation of geometrically active atomic state. Acta Physica Sinica, 2010, 59(11): 7824-7829. doi: 10.7498/aps.59.7824
    [6] Zheng Ying-Hong, Chen Tong, Wang Ping, Chang Zhe. Properties of geometric phase under Galilean transformation. Acta Physica Sinica, 2007, 56(11): 6199-6203. doi: 10.7498/aps.56.6199
    [7] Yang Huan, Gao Kuang, Zhang Sui-Meng. A theoretical study on (e, 2e) process for helium in large energy loss and close to minimum momentum transfer geometry. Acta Physica Sinica, 2007, 56(9): 5202-5208. doi: 10.7498/aps.56.5202
    [8] Canonical transformation of quantization for mesoscopic capacity-coupled dissipative circuit. Acta Physica Sinica, 2007, 56(12): 7224-7229. doi: 10.7498/aps.56.7224
    [9] Lou Tai-Ping. A covariant gravitational field equation including the contribution of gravitational field. Acta Physica Sinica, 2006, 55(4): 1602-1606. doi: 10.7498/aps.55.1602
    [10] Li Hua-Zhong. Remarks on “Lewis-Riesenfeld phase” and quantum geometric phase. Acta Physica Sinica, 2004, 53(6): 1643-1646. doi: 10.7498/aps.53.1643
    [11] Song Tong-Qiang. Quantization of dissipative mesoscopic capacitance coupling circuit. Acta Physica Sinica, 2004, 53(5): 1352-1356. doi: 10.7498/aps.53.1352
    [12] QIANG WEN-CHAO. GLOBAL DEFORMATION GEOMETRY OFA SELF-GRAVITATIONAL ROTATIONAL BALL. Acta Physica Sinica, 2001, 50(9): 1643-1647. doi: 10.7498/aps.50.1643
    [13] SHEN HAN-XIN, ZHU ZI-ZHONG, HUANG MEI-CHUN. THE GEOMETRY AND ELECTRONIC PROPERTIES OF NiAl. Acta Physica Sinica, 2001, 50(1): 95-98. doi: 10.7498/aps.50.95
    [14] LI XIN-ZHOU, YUAN NING-YI, LIU DAO-JUN, HAO JIAN-GANG. EXTERIOR GRAVITATIONAL PERTURBATION ON GENERALIZED SCHWARZSCHILD GEOMETRY. Acta Physica Sinica, 2000, 49(6): 1031-1034. doi: 10.7498/aps.49.1031
    [15] SHI MING-JUN, DU JIANG-FENG, ZHU DONG-PEI, RUAN TU-NAN. THE GEOMETRICAL PICTURE OF MIXED ENTANGLED STATES. Acta Physica Sinica, 2000, 49(10): 1912-1918. doi: 10.7498/aps.49.1912
    [16] QIANG WEN-CHAO. SURFACE GEOMETRY OF TWO SCHWARZSCHILD BLACK HOLES. Acta Physica Sinica, 1992, 41(12): 1913-1918. doi: 10.7498/aps.41.1913
    [17] QIANG WEN-CHAO. SURFACE GEOMETRY OF A KERR-NUT BLACK HOLE. Acta Physica Sinica, 1992, 41(7): 1045-1056. doi: 10.7498/aps.41.1045
    [18] CHEN YAN-SONG, ZHENG SHI-HAI, LI DE-HUA. TWO-DIMENSIONAL OPTICAL GEOMETRIC MOMENT TRANSFORM. Acta Physica Sinica, 1991, 40(10): 1601-1606. doi: 10.7498/aps.40.1601
    [19] YANG QI-BING, YE HENG-QIANG. THE GEOMETRY OF LATTICE PLANES. Acta Physica Sinica, 1980, 29(8): 1033-1038. doi: 10.7498/aps.29.1033
    [20] SHENG JIAN. AN APPROXIMATE GRAPHIC METHOD TO CONSTRUCT THE DEMAGNETIZATION CURVE FOR PERMANENT MAGNETIC MATERIALS. Acta Physica Sinica, 1978, 27(3): 331-338. doi: 10.7498/aps.27.331
Metrics
  • Abstract views:  5726
  • PDF Downloads:  164
  • Cited By: 0
Publishing process
  • Received Date:  20 July 2015
  • Accepted Date:  18 September 2015
  • Published Online:  05 December 2015

/

返回文章
返回
Baidu
map