-
Organic materials with strong two-photon absorption response have attracted a great deal of interest in recent years for their many potential applications such as two-photon fluorescence microscopy, optical limiting, photodynamic therapy, and so on. Theoretical study on the relationships between molecular structure and two-photon absorption property has great importance in guiding the experimental design and synthesis of functional materials. Nowadays, quantum chemical calculations become very useful and popular tools in investigating the structure-property relations. At the same computational level, the two-photon absorption properties of different compounds can be compared accurately, and thus provide reasonable structure-property relations. Recently, a series of novel divinyl sulfides/sulfonesbased molecules have been synthesized and it is found that their photophysical properties behave like quadrupolar charge-transfer chromophores. In order to explore their potential two-photon absorption applications, in this paper, the two-photon absorption properties of these new molecules are calculated by using quantum chemical methods. Their molecular geometries are optimized at the hybrid B3LYP level with 6-31+g(d, p) basis set in the Gaussian 09 program. The two-photon absorption cross sections are calculated by response theory using the B3LYP functional with 6-31g(d) and 6-31+g(d) basis sets respectively in the Dalton program. In response theory, the single residue of the quadratic response function is used to identify the two-photon transition matrix element. Using the same methods, the two-photon absorption properties of distyrylbenzene compounds are computed for comparison. The basis set effects on excitation energies and two-photon absorption cross sections have been checked. It is found that the use of large basis sets could probably provide better numerical results, but the overall property trends would not change. Calculations show that the molecule with a triphenylamine group has the largest cross-section due to its strong donor groups. The divinyl sulfones-based dyes have larger cross-sections than the corresponding sulfides-based ones, because divinyl sulfones have stronger capability to accept electrons and at the same time the torsional angles between benzene rings in sulfones-based molecules are smaller than in the sulfides-based molecules. In the applicable wavelength range, these new dyes exhibit large two-photon absorption cross-sections which have the same order of magnitude as the strong two-photon absorption molecules with similar conjugation length. The largest cross section comes to 1613.3 GM calculated by using 6-31g(d) basis set. Molecular orbitals involved in the strongest two-photon absorption excitations are plotted and the charge transfer process is analyzed at length. The divinyl sulfide and sulfone centers behave as electron withdrawing groups and can form effective charge transfer molecules. On the basis of these new molecules, the structure inducing two-photon absorption enhancement is designed by employing isomerism effect. When the benzene rings of carbazole groups are connected with the molecular center, the planarity and charge transfer intensity are increased, and then the two-photon absorption cross-section can be improved dramatically. This study provides theoretical guidelines for the synthesis of new type of active two-photon absorption materials.
[1] Göppert-Mayer M 1931 Ann. Phys. 401 273
[2] Kaiser W, Garret C G B 1961 Phys. Rev. Lett. 7 229
[3] Helmchen F, Denk W 2005 Nat. Methods 2 932
[4] Spangler C W 1999 J. Mater. Chem. 9 2013
[5] Brown S B, Brown E A, Walker I 2004 Lancet Oncol. 5 497
[6] Walker E, Rentzepis P M 2008 Nat. Photonics 2 406
[7] Liu Z, Cao D, Chen Y, Fang Q 2010 Dyes Pigm. 86 63
[8] Charlot M, Porrès L, Entwistle C D, Beeby A, Marder T B, Blanchard-Desce M 2005 Phys. Chem. Chem. Phys. 7 600
[9] Huang T H, Yang D, Kang Z H, Miao E L, Lu R, Zhou H P, Wang F, Wang G W, Cheng P F, Wang Y H, Zhang H Z 2013 Opt. Mater. 35 467
[10] Kim H M, Cho B R 2009 Chem. Commun. 153
[11] Katan C, Terenziani F, Mongin O, Werts M H V, Porrés L, Pons T, Mertz J, Tretiak S, Blanchard-Desce M 2005 J. Phys. Chem. A 109 3024
[12] Arnbjerg J, Jiménez-Banzo A, Paterson M J, Nonell S, Borrell J I, Christiansen O, Ogilby P R 2007 J. Am. Chem. Soc. 129 5188
[13] Pawlicki M, Collins H A, Denning R G, Anderson H L 2009 Angew. Chem. Int. Ed. 48 3244
[14] Norman P, Macak P, Luo Y, Ågren H 1999 J. Chem. Phys. 110 7960
[15] Macak P, Norman P, Luo Y, Ågren H 2000 J. Chem. Phys. 112 1868
[16] Zhao B, Qi T L 2001 Acta Phys. Sin. 50 1699 (in Chinese) [赵波, 祁铁流 2001 50 1699]
[17] Wang C K, Zhang Z, Ding M C, Li X J, Sun Y H, Zhao K 2010 Chin. Phys. B 19 103304
[18] Zhao K, Sun Y H, Wang C K, Luo Y, Zhang X, Yu X Q, Jiang M H 2005 Acta Phys. Sin. 54 2662 (in Chinese) [赵珂, 孙元红, 王传奎, 罗毅, 张献, 于小强, 蒋民华 2005 54 2662]
[19] Liu P W, Zhao K, Han G C 2011 Chem. Phys. Lett. 514 226
[20] Han G C, Zhao K, Liu P W, Zhang L L 2012 Chin. Phys. B 21 118201
[21] Jia H H, Zhao K, Wu X L 2014 Chem. Phys. Lett. 612 151
[22] Monçalves M, Rampon D S, Schneider P H, Rodembusch F S, Silveira C C 2014 Dyes Pigm. 102 71
[23] Das S K, Lim C S, Yang S Y, Han J H, Cho B R 2012 Chem. Commun. 48 8395
[24] Huang Z L, Lei H, Li N, Qiu Z R, Wang H Z, Guo J D, Luo Y, Zhong Z P, Liu X F, Zhou Z H 2003 J. Mater. Chem. 13 708
[25] Lee H J, Sohn J, Hwang J, Park S Y, Choi H, Cha M 2004 Chem. Mater. 16 456
[26] Yao S, Ahn H Y, Wang X, Fu J, Van Stryland E W, Hagan D J, Belfield K D 2010 J. Org. Chem. 75 3965
[27] Luo Y, Norman P, Macak P, Ågren H 2000 J. Phys. Chem. A 104 4718
[28] Zhao K, Liu P W, Wang C K, Luo Y 2010 J. Phys. Chem. B 114 10814
[29] Olsen J, Jørgensen P 1985 J. Chem. Phys. 82 3235
[30] Monson P R, McClain W M 1970 J. Chem. Phys. 53 29
[31] Zhao K, Tu Y, Luo Y 2009 J. Phys. Chem. B 11310271
[32] Zhao K, Ferrighi L, Frediani L, Wang C K, Luo Y 2007 J. Chem. Phys. 126 204509
[33] Terenziani F, Parthasarathy V, Pla-Quintana A, Maishal T, Caminade A M, Majoral J P, Blanchard-Desce M 2009 Angew. Chem. Int. Ed. 48 8691
[34] Zhao K, Luo Y 2010 J. Phys. Chem. B 114 13167
-
[1] Göppert-Mayer M 1931 Ann. Phys. 401 273
[2] Kaiser W, Garret C G B 1961 Phys. Rev. Lett. 7 229
[3] Helmchen F, Denk W 2005 Nat. Methods 2 932
[4] Spangler C W 1999 J. Mater. Chem. 9 2013
[5] Brown S B, Brown E A, Walker I 2004 Lancet Oncol. 5 497
[6] Walker E, Rentzepis P M 2008 Nat. Photonics 2 406
[7] Liu Z, Cao D, Chen Y, Fang Q 2010 Dyes Pigm. 86 63
[8] Charlot M, Porrès L, Entwistle C D, Beeby A, Marder T B, Blanchard-Desce M 2005 Phys. Chem. Chem. Phys. 7 600
[9] Huang T H, Yang D, Kang Z H, Miao E L, Lu R, Zhou H P, Wang F, Wang G W, Cheng P F, Wang Y H, Zhang H Z 2013 Opt. Mater. 35 467
[10] Kim H M, Cho B R 2009 Chem. Commun. 153
[11] Katan C, Terenziani F, Mongin O, Werts M H V, Porrés L, Pons T, Mertz J, Tretiak S, Blanchard-Desce M 2005 J. Phys. Chem. A 109 3024
[12] Arnbjerg J, Jiménez-Banzo A, Paterson M J, Nonell S, Borrell J I, Christiansen O, Ogilby P R 2007 J. Am. Chem. Soc. 129 5188
[13] Pawlicki M, Collins H A, Denning R G, Anderson H L 2009 Angew. Chem. Int. Ed. 48 3244
[14] Norman P, Macak P, Luo Y, Ågren H 1999 J. Chem. Phys. 110 7960
[15] Macak P, Norman P, Luo Y, Ågren H 2000 J. Chem. Phys. 112 1868
[16] Zhao B, Qi T L 2001 Acta Phys. Sin. 50 1699 (in Chinese) [赵波, 祁铁流 2001 50 1699]
[17] Wang C K, Zhang Z, Ding M C, Li X J, Sun Y H, Zhao K 2010 Chin. Phys. B 19 103304
[18] Zhao K, Sun Y H, Wang C K, Luo Y, Zhang X, Yu X Q, Jiang M H 2005 Acta Phys. Sin. 54 2662 (in Chinese) [赵珂, 孙元红, 王传奎, 罗毅, 张献, 于小强, 蒋民华 2005 54 2662]
[19] Liu P W, Zhao K, Han G C 2011 Chem. Phys. Lett. 514 226
[20] Han G C, Zhao K, Liu P W, Zhang L L 2012 Chin. Phys. B 21 118201
[21] Jia H H, Zhao K, Wu X L 2014 Chem. Phys. Lett. 612 151
[22] Monçalves M, Rampon D S, Schneider P H, Rodembusch F S, Silveira C C 2014 Dyes Pigm. 102 71
[23] Das S K, Lim C S, Yang S Y, Han J H, Cho B R 2012 Chem. Commun. 48 8395
[24] Huang Z L, Lei H, Li N, Qiu Z R, Wang H Z, Guo J D, Luo Y, Zhong Z P, Liu X F, Zhou Z H 2003 J. Mater. Chem. 13 708
[25] Lee H J, Sohn J, Hwang J, Park S Y, Choi H, Cha M 2004 Chem. Mater. 16 456
[26] Yao S, Ahn H Y, Wang X, Fu J, Van Stryland E W, Hagan D J, Belfield K D 2010 J. Org. Chem. 75 3965
[27] Luo Y, Norman P, Macak P, Ågren H 2000 J. Phys. Chem. A 104 4718
[28] Zhao K, Liu P W, Wang C K, Luo Y 2010 J. Phys. Chem. B 114 10814
[29] Olsen J, Jørgensen P 1985 J. Chem. Phys. 82 3235
[30] Monson P R, McClain W M 1970 J. Chem. Phys. 53 29
[31] Zhao K, Tu Y, Luo Y 2009 J. Phys. Chem. B 11310271
[32] Zhao K, Ferrighi L, Frediani L, Wang C K, Luo Y 2007 J. Chem. Phys. 126 204509
[33] Terenziani F, Parthasarathy V, Pla-Quintana A, Maishal T, Caminade A M, Majoral J P, Blanchard-Desce M 2009 Angew. Chem. Int. Ed. 48 8691
[34] Zhao K, Luo Y 2010 J. Phys. Chem. B 114 13167
Catalog
Metrics
- Abstract views: 6860
- PDF Downloads: 166
- Cited By: 0