Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress on avalanche multiplication GaAs photoconductive terahertz emitter

Shi Wei Yan Zhi-Jin

Citation:

Research progress on avalanche multiplication GaAs photoconductive terahertz emitter

Shi Wei, Yan Zhi-Jin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • GaAs photoconductive switch illuminated by a femto-second laser has been widely used in a terabertz (THz) time domain spectroscopy system as a THz wave emission antenna. Now, all of the GaAs photoconductive switches are used in linear mode. However, when the GaAs photoconductive switch operates in an avalanche multiplication mode, the power capacity of output ultrafast electric pulse is much higher than that in a linear mode. So far, nobody has proposed the idea of generating THz waves by using the GaAs photoconductive switches in the avalanche multiplication mode. In this paper, we report the feasibility and research progress of using the GaAs photoconductive switches in the avalanche multiplication mode as the THz sources. By theoretical analysis and experimental research, some results are obtained experimentally as follows. 1) The GaAs photoconductive antenna can operate in an avalanche multiplication mode when illuminated by a femto-second laser pulse with an energy on the order of nJ. 2) The maintaining time of the avalanche multiplication mode, i.e, lock-on period, can be reduced by the quenching mode of photo-activated charge domain. These results lay the foundation for generating the high intensity THz emission by the GaAs photoconductive antenna with the avalanche multiplication mechanism.
      Corresponding author: Shi Wei, swshi@mail.xaut.edu.cn
    • Funds: Project supported by the Special Fund for Key Research on Scientific Instruments of the National Natural Science Foundation of China (Grant No. 61427814), the National Natural Science Foundation of China (Grant No. 51377133), the Terahertz Science and Technology Fund of Chinese Academy of Engineering Physics (Grant No. CAEPTHZ201404), the Foundation of Pulse Power Key Laboratory of Chinese Academy of Engineering Physics (Grant No. PPLF2013PZ01), the Foundation of Shaanxi Key Science and Technology Innovation Team, China (Grant No. 2014KTC-13), and the Equipment Pre-research Fund Project, China (Grant No. 9140C370504140C37175).
    [1]

    Takano K, Chiyoda Y, Nishida T, Miyamaru F, Kawabata T, Sasaki H, Takeda M W, Hangyo M 2011 Appl. Phys. Lett. 99 161114

    [2]

    Krause J, Wagner M, Winnerl S, Helm M, Stehr D 2011 Opt. Express 19 19114

    [3]

    Shi W, Hou L, Wang X M 2011 J. Appl. Phys. 110 023111

    [4]

    Rihani S, Faulks R, Beere H, Page H, Gregory I, Evans M, Ritchie D A, Peppe M 2009 Appl. Phys. Lett. 95 051106

    [5]

    Gao Y H, Chen M K, Yin S, Ruffin P, Brantley C, Edwards E 2011 J. Appl. Phys. 109 033108

    [6]

    Miyamaru F, Saito Y, Yamamoto K, Furuya T, Nishizawa S, Tani M 2010 Appl. Phys. Lett. 96 211104

    [7]

    Lu L, Sun J D, Roger A L, Sun Y F, Wu D M, Cai Y, Qin H 2015 Chin. Phys. B 24 028504

    [8]

    Yang Y P, Ranjan S, Zhang W L 2014 Chin. Phys. B 23 128702

    [9]

    Sun Y F, Sun J D, Zhang X Y, Qin H, Zhang B S, Wu D M 2012 Chin. Phys. B 21 108504

    [10]

    Loubriel G M, Zutavern F J, Baca A G, Hjalmarson H P, Plut T, Helgeson W D, Brown D J 1997 IEEE Trans. Plasma Sci. 25 124

    [11]

    Jerry L H, Bailey D W, Dougal R A, Venkatesan V 1995 IEEE Trans. Power Electron. 10 615

    [12]

    Shi W, Zhao W, Zhang X B, Li E L 2002 Acta Phys. Sin. 51 867 (in Chinese) [施卫, 赵卫, 张显斌, 李恩玲 2002 51 867]

    [13]

    Islam N E, Schamiloglu E, Fleddermann C B 1998 Appl. Phys. Lett. 73 1988

    [14]

    Shi W, Qu G H, Xu M, Xue H, Ji W L, Zhang L, Tian L Q 2009 Appl. Phys. Lett. 94 072110

    [15]

    Shi W, Tian L Q, Liu Z, Zhang L Q, Zhang Z Z, Zhou L J, Liu H W, Xie W P 2008 Appl. Phys. Lett. 92 043511

    [16]

    Shi W, Liang Z X 1999 Chin. J. Semicond. 21 53 (in Chinese) [施卫, 梁振宪 1999 半导体学报 21 53]

    [17]

    Shi W 2001 Chin. J. Semicond. 22 1481

    [18]

    Shi W, Chen E Z, Zhang X B, Li Q 2002 Chin. Phys. Lett. 19 1119

    [19]

    Shi W, Tian L 2006 Appl. Phys. Lett. 89 202103

    [20]

    Shi W, Dai H Y, Sun X W 2003 Chin. Opt. Lett. 1 553

    [21]

    Tian L Q, Shi W 2008 J. Semicond. 29 1913

    [22]

    Faulks R, Rihani S, Beere H E, Evans M J, Ritchie D A, Pepper M 2010 Appl. Phys. Lett. 96 081106

    [23]

    Shi W, Zhang Z Z, Hou L 2010 Chin. Phys. Lett. 27 087203

    [24]

    Diao J M, Du L, Ouyang J, Yang P, Nie Z P 2011 J. Electromagn. Waves Appl. 25 2236

    [25]

    Ma Z, Ma H M, Yang C T, Feng K M 2011 J. Syst. Eng. Electron. 22 373

    [26]

    Loubriel G M, Helgeson W D, McLaughlin D L, O'Malley M W, Zutavern F J, Rosen A, Stabile P J 1991 IEEE Trans. Electron Dev. 38 692

  • [1]

    Takano K, Chiyoda Y, Nishida T, Miyamaru F, Kawabata T, Sasaki H, Takeda M W, Hangyo M 2011 Appl. Phys. Lett. 99 161114

    [2]

    Krause J, Wagner M, Winnerl S, Helm M, Stehr D 2011 Opt. Express 19 19114

    [3]

    Shi W, Hou L, Wang X M 2011 J. Appl. Phys. 110 023111

    [4]

    Rihani S, Faulks R, Beere H, Page H, Gregory I, Evans M, Ritchie D A, Peppe M 2009 Appl. Phys. Lett. 95 051106

    [5]

    Gao Y H, Chen M K, Yin S, Ruffin P, Brantley C, Edwards E 2011 J. Appl. Phys. 109 033108

    [6]

    Miyamaru F, Saito Y, Yamamoto K, Furuya T, Nishizawa S, Tani M 2010 Appl. Phys. Lett. 96 211104

    [7]

    Lu L, Sun J D, Roger A L, Sun Y F, Wu D M, Cai Y, Qin H 2015 Chin. Phys. B 24 028504

    [8]

    Yang Y P, Ranjan S, Zhang W L 2014 Chin. Phys. B 23 128702

    [9]

    Sun Y F, Sun J D, Zhang X Y, Qin H, Zhang B S, Wu D M 2012 Chin. Phys. B 21 108504

    [10]

    Loubriel G M, Zutavern F J, Baca A G, Hjalmarson H P, Plut T, Helgeson W D, Brown D J 1997 IEEE Trans. Plasma Sci. 25 124

    [11]

    Jerry L H, Bailey D W, Dougal R A, Venkatesan V 1995 IEEE Trans. Power Electron. 10 615

    [12]

    Shi W, Zhao W, Zhang X B, Li E L 2002 Acta Phys. Sin. 51 867 (in Chinese) [施卫, 赵卫, 张显斌, 李恩玲 2002 51 867]

    [13]

    Islam N E, Schamiloglu E, Fleddermann C B 1998 Appl. Phys. Lett. 73 1988

    [14]

    Shi W, Qu G H, Xu M, Xue H, Ji W L, Zhang L, Tian L Q 2009 Appl. Phys. Lett. 94 072110

    [15]

    Shi W, Tian L Q, Liu Z, Zhang L Q, Zhang Z Z, Zhou L J, Liu H W, Xie W P 2008 Appl. Phys. Lett. 92 043511

    [16]

    Shi W, Liang Z X 1999 Chin. J. Semicond. 21 53 (in Chinese) [施卫, 梁振宪 1999 半导体学报 21 53]

    [17]

    Shi W 2001 Chin. J. Semicond. 22 1481

    [18]

    Shi W, Chen E Z, Zhang X B, Li Q 2002 Chin. Phys. Lett. 19 1119

    [19]

    Shi W, Tian L 2006 Appl. Phys. Lett. 89 202103

    [20]

    Shi W, Dai H Y, Sun X W 2003 Chin. Opt. Lett. 1 553

    [21]

    Tian L Q, Shi W 2008 J. Semicond. 29 1913

    [22]

    Faulks R, Rihani S, Beere H E, Evans M J, Ritchie D A, Pepper M 2010 Appl. Phys. Lett. 96 081106

    [23]

    Shi W, Zhang Z Z, Hou L 2010 Chin. Phys. Lett. 27 087203

    [24]

    Diao J M, Du L, Ouyang J, Yang P, Nie Z P 2011 J. Electromagn. Waves Appl. 25 2236

    [25]

    Ma Z, Ma H M, Yang C T, Feng K M 2011 J. Syst. Eng. Electron. 22 373

    [26]

    Loubriel G M, Helgeson W D, McLaughlin D L, O'Malley M W, Zutavern F J, Rosen A, Stabile P J 1991 IEEE Trans. Electron Dev. 38 692

Metrics
  • Abstract views:  7939
  • PDF Downloads:  345
  • Cited By: 0
Publishing process
  • Received Date:  11 August 2015
  • Accepted Date:  08 October 2015
  • Published Online:  05 November 2015

/

返回文章
返回
Baidu
map