Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Combined analysis of tunable phase mask within spatial and frequency domain

Zhou Liang Liu Zhao-Hui She Wen-Ji

Citation:

Combined analysis of tunable phase mask within spatial and frequency domain

Zhou Liang, Liu Zhao-Hui, She Wen-Ji
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Wavefront coding technique is a powerful technique which overcomes the defects of traditional way to extend depth of field. By inserting a phase mask into the traditional incoherent imaging system, wavefront coding technique does not reduce the resolution and the light gathering power of the optical system but enlarges the depth of field of incoherent imaging system. Although several kinds of phase masks have been reported, cubic phase mask is still of a classical type which has been investigated widely both in spatial and frequency domain. Since the phase profiles of phase masks adopted in classical wavefront coding systems are predefined with specific optical systems, the extension of depth of field is not tunable. Tunable wavefront coding systems are introduced by using a pair of detachable phase masks, which is possible to control the depth of field and bandwidth of system by changing the position of each component with respect to the pupil center. Ojeda-Castaeda [Ojeda-Castaeda J, Rodrguez M, Naranjo R 2010 Proceedings of Progress in Electronics Research Symposium, Cambridge, July 58, 2010 p531] proposed to use a pair of cosine phase masks to make defocus sensitivity tunable. Zhao [Zhao H, Wei J X 2014 Opt. Commun. 326 35] investigated an improved version of Ojeda- Castaneda's design in frequency domain and found that the proposed system realized tunable bandwidth. The present study, based on the work of Zhao, analyzes the tunable characteristics of a pair of simple modified detachable cubic phase masks in spatial domain and frequency domain. Firstly, the ray aberration theory is adopted to give mathematical analyses and ray aberration maps of the proposed tunable phase mask. Based on the mathematical derivations, the size of point spread function (PSF) of system can be changed not only by profile of each cubic mask but also by the each mask displacement relative to pupil center. Secondly, a mathematical PSF based on the stationary phase method is derived in spatial domain. Simulations indicate that the positions of PSF translate in the image plane with the displacements of phase mask profile and the position of each component with respect to the pupil center. By analyzing the oscillations of PSF, the effective bandwidth is obtained. Through the expression, we can conclude that the effective bandwidth can be changed by the position, mask profile of each component and defocus. Only when the addition of two mask profiles is large enough, can the effective bandwidth be simplified without adding the influence of defocus. In addition, though the approximate expression of magnitude transfer of function (MTF) has been given by adopting stationary phase method in the appendix of previous work, it cannot give an intuitive grasp of the effective bandwidth in MTF map. Unlike the MTF expression derived before, the exact optical transfer function (OTF) expression is derived by adopting Fresnel integral in frequency domain. Exact MTF and phase transfer function (PTF) can be derived from OTF. Based on the exact MTF expression, simulations give an intuitive effective bandwidth in MTF map. Simulations also show the nonlinear property of PTF. The effective bandwidth and MTF can be changed by different phase mask profiles and positions, which indicate that the effective bandwidth and defocus sensitivity can be tuned. Analyses are conducted both in spatial domain and in frequency domain to verify the tunable property of the proposed phase mask, which provides theoretical foundation for tunable wavefront coding system design.
      Corresponding author: Zhou Liang, zhouliang@opt.ac.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA7088047).
    [1]

    Dowski E R, Cathey W T 1995 Appl. Opt. 34 1859

    [2]

    Zhao T Y, Liu Q X, Yu F H 2012 Acta Phys. Sin. 61 074207 (in Chinese) [赵廷玉, 刘钦晓, 余飞鸿 2012 61 074207]

    [3]

    Zhao T Y, Liu Q X, Yu F H 2012 Chin. Phys. B 21 064203

    [4]

    Ojeda-Castaeda J, Rodrguez M, Naranjo R 2010 Proceedings of Progress in Electronics Research Symposium Cambridge, UK, July 5-8, 2010 p531

    [5]

    Zhao H, Wei J X 2014 Opt. Commun. 326 35

    [6]

    Huang W W, Ye Z, Zhang W Z, Zhao T Y, Yu F H 2008 Opt. Commun. 281 4577

    [7]

    Born M, Wolf E (translated by Yang J S) 2006 Principle of Optics (Beijing: Publishing House of Electronics Industry) pp744-745 (in Chinese) [波恩 M, 沃尔夫 E 著 (杨葭孙 译) 2006 光学原理 (北京: 电子工业出版社)第774745页]

    [8]

    Somayaji M 2006 Ph. D. Dissertation (Dallas: Southern Methodist University)

    [9]

    Goodman J W (translated by Qin K Q, Liu P S, Chen J B, Cao Q Z) 2011 Introduction to Fourier Optics (3rd Ed.) (Beijing: Publishing House of Electronics Industry) pp99-106 (inChinese) [古德曼 J W 著(秦克诚, 刘培森, 陈家壁, 曹其智 译) 2011 傅里叶光学导论(第3版)(北京: 电子工业出版社)第99106页]

  • [1]

    Dowski E R, Cathey W T 1995 Appl. Opt. 34 1859

    [2]

    Zhao T Y, Liu Q X, Yu F H 2012 Acta Phys. Sin. 61 074207 (in Chinese) [赵廷玉, 刘钦晓, 余飞鸿 2012 61 074207]

    [3]

    Zhao T Y, Liu Q X, Yu F H 2012 Chin. Phys. B 21 064203

    [4]

    Ojeda-Castaeda J, Rodrguez M, Naranjo R 2010 Proceedings of Progress in Electronics Research Symposium Cambridge, UK, July 5-8, 2010 p531

    [5]

    Zhao H, Wei J X 2014 Opt. Commun. 326 35

    [6]

    Huang W W, Ye Z, Zhang W Z, Zhao T Y, Yu F H 2008 Opt. Commun. 281 4577

    [7]

    Born M, Wolf E (translated by Yang J S) 2006 Principle of Optics (Beijing: Publishing House of Electronics Industry) pp744-745 (in Chinese) [波恩 M, 沃尔夫 E 著 (杨葭孙 译) 2006 光学原理 (北京: 电子工业出版社)第774745页]

    [8]

    Somayaji M 2006 Ph. D. Dissertation (Dallas: Southern Methodist University)

    [9]

    Goodman J W (translated by Qin K Q, Liu P S, Chen J B, Cao Q Z) 2011 Introduction to Fourier Optics (3rd Ed.) (Beijing: Publishing House of Electronics Industry) pp99-106 (inChinese) [古德曼 J W 著(秦克诚, 刘培森, 陈家壁, 曹其智 译) 2011 傅里叶光学导论(第3版)(北京: 电子工业出版社)第99106页]

  • [1] Zhao Wei-Rui, Wang Hao, Zhang Lu, Zhao Yue-Jin, Chu Chun-Yan. High-precision co-phase method for segments based on a convolutional neural network. Acta Physica Sinica, 2022, 71(16): 164202. doi: 10.7498/aps.71.20220434
    [2] Li Xin-Nan, Huang He-Yan, Jia Xiao-Ning, Ma Si-Liang. Guided filter-based blind image restoration method. Acta Physica Sinica, 2015, 64(13): 134202. doi: 10.7498/aps.64.134202
    [3] Li Na, Jia Di, Zhao Hui-Jie, Su Yun, Li Tuo-Tuo. Error analysis and reconstruction for diffractive optic imaging spectrometer using the multiple iterations. Acta Physica Sinica, 2014, 63(17): 177801. doi: 10.7498/aps.63.177801
    [4] Wang Hua-Ying, Yu Meng-Jie, Jiang Ya-Nan, Song Xiu-Fa, Zhu Qiao-Fen, Liu Fei-Fei. High-resolution digital holographic microscopy realized by small size CCD camera. Acta Physica Sinica, 2013, 62(24): 244203. doi: 10.7498/aps.62.244203
    [5] Zhang Wen-Xi, Xiang Li-Bin, Kong Xin-Xin, Li Yang, Wu Zhou, Zhou Zhi-Sheng. Resolution of coherent field imaging technique. Acta Physica Sinica, 2013, 62(16): 164203. doi: 10.7498/aps.62.164203
    [6] Shi Ming-Zhu, Xu Ting-Fa, Liang Jiong, Li Xiang-Min. PSF estimation via gradient cepstrum analysis for single blurred image. Acta Physica Sinica, 2013, 62(17): 174204. doi: 10.7498/aps.62.174204
    [7] Xiang Li-Bin, Zhang Wen-Xi, Wu Zhou, Lü Xiao-Yu, Li Yang, Zhou Zhi-Sheng, Kong Xin-Xin. Optical transfer function of coherent field imaging based on deviation of receptors. Acta Physica Sinica, 2013, 62(22): 224201. doi: 10.7498/aps.62.224201
    [8] Zhao Ting-Yu, Liu Qin-Xiao, Yu Fei-Hong. The point spread function analysis in a wavefront coding system based on stationary phase method. Acta Physica Sinica, 2012, 61(7): 074207. doi: 10.7498/aps.61.074207
    [9] Li Fei. Phase diversity image restoration. Acta Physica Sinica, 2012, 61(23): 230203. doi: 10.7498/aps.61.230203
    [10] Xiao Xiao, Zhang Zhi-You, Xiao Zhi-Gang, Xu De-Fu, Deng Chi. The study on optical transfer function of silver superlens. Acta Physica Sinica, 2012, 61(11): 114201. doi: 10.7498/aps.61.114201
    [11] Zhao Gui-Min, Lu Ming-Zhu, Wan Ming-Xi, Fang Li. Study of vibro-acoustography with high spatial resolution based on sector array transducers. Acta Physica Sinica, 2009, 58(9): 6596-6603. doi: 10.7498/aps.58.6596
    [12] Sun Ming-Zhu, Zhao Xin, Lu Gui-Zhang. Depth measurement in the direction of optical axis based on defocused micro-manipulation system. Acta Physica Sinica, 2009, 58(9): 6248-6257. doi: 10.7498/aps.58.6248
    [13] Qi Xun-Jun, Lin Bin, Cao Xiang-Qun, Chen Yu-Qing. Study of modular transfer function-based optieal low-pass filter evaluation model and experiment. Acta Physica Sinica, 2008, 57(5): 2854-2859. doi: 10.7498/aps.57.2854
    [14] Zhao Ting-Yu, Ye Zi, Zhang Wen-Zi, Yu Fei-Hong. The extension effect of point spread function in wavefront coding system due to off-axis illumination. Acta Physica Sinica, 2008, 57(1): 200-205. doi: 10.7498/aps.57.200
    [15] Kong Xiang-Long, Li Yu-Tong, Yuan Xiao-Hui, Yu Quan-Zhi, Zheng Zhi-Yuan, Liang Wen-Xi, Wang Zhao-Hua, Wei Zhi-Yi, Zhang Jie. Restoration of pinhole images using Lucy-Richardson algorithm. Acta Physica Sinica, 2006, 55(5): 2364-2370. doi: 10.7498/aps.55.2364
    [16] Chen Fa-Xin, Zheng Jian, Yang Jian-Lun. Numerical simulation of neutron thick aperture imaging. Acta Physica Sinica, 2006, 55(11): 5947-5952. doi: 10.7498/aps.55.5947
    [17] Chen Min, Xiao Ti-Qiao, Luo Yu-Yu, Liu Li-Xiang, Wei Xun, Du Guo-Hao, Xu Hong-Jie. Phase-contrast imaging with microfocus x-ray source. Acta Physica Sinica, 2004, 53(9): 2953-2957. doi: 10.7498/aps.53.2953
    [18] Li Hai-Yang, Zhou Jian-Peng, Feng Ying. . Acta Physica Sinica, 2000, 49(3): 565-569. doi: 10.7498/aps.49.565
    [19] HUANG JING, LIANG RUI-SHENG, SITU DA, ZHANG KUN-MING, TANG ZHI-LIE. THE OPTICAL TRANSFER FUNCTION OF CONFOCAL SCANNING LASER MICROSCOPY WITH GAUSS SOURCE. Acta Physica Sinica, 1998, 47(8): 1289-1295. doi: 10.7498/aps.47.1289
    [20] XIMEN JI-YE, YAN JI-WEN, HUANG XU. ON ELECTRON OPTICAL TRANSFER FUNCTION AND IMPULSE RESPONSE IN THE PRESENCE OF SPHERICAL ABERRATION AND DEFOCUS. Acta Physica Sinica, 1985, 34(3): 348-358. doi: 10.7498/aps.34.348
Metrics
  • Abstract views:  5317
  • PDF Downloads:  113
  • Cited By: 0
Publishing process
  • Received Date:  07 May 2015
  • Accepted Date:  25 June 2015
  • Published Online:  05 November 2015

/

返回文章
返回
Baidu
map