Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Semi-Dirac points in two-dimensional phononic crystals

Cao Hui-Xian Mei Jun

Citation:

Semi-Dirac points in two-dimensional phononic crystals

Cao Hui-Xian, Mei Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A two-dimensional phononic crystal (PC) composed of a triangular array of square iron cylinders embedded in water is designed, in which the accidental degeneracy of the Bloch eigenstates is utilized to realize a semi-Dirac point at the Brillouin zone center. In the vicinity of the semi-Dirac point, the dispersion relation is linear along the Y direction but quadratic along the X direction. Rotating the iron cylinders around their axis by 45 and slightly tuning the side length of the cylinders, a new semi-Dirac point can be realized at the Brillouin zone center, where the dispersion relation is quadratic along the Y direction but linear along the X direction. To gain a deeper understanding of the semi-Dirac point, a k p perturbation method is used to investigate this peculiar dispersion relation and study how the semi-Dirac point is formed. The linear slopes of dispersion relations along any direction around the semi-Dirac point can be accurately predicted by the perturbation method, and the results agree very well with the rigorous band structure calculations. Furthermore, the mode-coupling integration between the degenerate Bloch eigenstates is zero in one direction but non-zero in the perpendicular direction, and this is the ultimate reason for the forming of a semi-Dirac point. With the help of the perturbation method, an effective Hamiltonian can be constructed around the semi-Dirac point, so that the Berry phase can be calculated, which is found to be zero. Actually, the different values of Berry phase indicate an important distinction between the semi-Dirac points and Dirac points. In addition, the acoustic wave transmission through the corresponding PC structure has been studied, and a switch-like behavior of the transmittance is observed along different directions. Along some particular direction, there exist deaf bands around the semi-Dirac point, and these bands cannot be excited by the externally incident plane waves due to the mismatch in mode symmetry. But the situation is different along the other direction, where the bands are active ones and therefore can be excited by the incident plane waves. Actually, such properties of the bands can be easily changed as long as the iron cylinders are rotated around their axis. The work described in this paper is helpful to the understanding of semi-Dirac point in phononic crystals and suggests possible applications in diverse fields.
      Corresponding author: Mei Jun, phjunmei@scut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274120), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2014ZG0032).
    [1]

    Castro N A H, Guinea F, PeresN M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [2]

    Rowlands D A, Zhang Y Z 2014 Chin. Phys. B 23 37101

    [3]

    Jung J, Raoux A, Qiao Z H, Mac-Donald A H 2014 Phys. Rev. B 89 205414

    [4]

    Wang X X, Bian G, Wang P, Chiang T C 2015 Phys. Rev. B 91 125103

    [5]

    Zhang Y P, Yin Y H, Lu H H, Zhang H Y 2014 Chin. Phys. B 23 027202

    [6]

    Wen J, Guo H, Yan C H, Wang Z Y, Chang K, Deng P, Zhang T, Zhang Z D, Ji S H, Wang L L, He K, Ma X C, Chen X, Xue Q K 2014 Chin. Phys. Lett. 31 116802

    [7]

    Li W F, Guo M, Zhang G, Zhang Y W 2014 Phys. Rev. B 89 205402

    [8]

    Lin S Y, Chen M, Yang X B, Zhao Y J, Wu S C, Felser C, Ya B H 2015 Phys. Rev. B 91 094107

    [9]

    Zhang D, Lin L Z, Zhu J J 2014 Chin. Phys. Lett. 31 028102

    [10]

    Torrent A, Dehesa J S 2012 Phys. Rev. Lett. 108 174301

    [11]

    Zhang X D, Liu Z Y 2008 Phys. Rev. Lett. 101 264303

    [12]

    Lu J Y, Qiu C Y, Xu S J, Ye Y T, Ke M Z, Liu Z Y 2014 Phys. Rev. B 89 134302

    [13]

    Chen Z G, Ni X, Wu Y, He C, Sun X C, Zheng L Y, Lu M H, Chen Y F 2014 Sci. Rep. 4 4613

    [14]

    Sun L, Gao J, Yang X D 2013 Opt. Express 2121542

    [15]

    Huang X Q, Lai Y, Hang Z H, Zheng H H, Chen C T 2011 Nature Materials 10 1038

    [16]

    Sepkhanov R A, Bazaliy Y B, Beenakker C W J 2007 Phys. Rev. A 75 063813

    [17]

    Mei J, Wu Y, Chan C T, Zhang Z Q 2012 Phys. Rev. B 86 035141

    [18]

    Wu Y 2014 Opt. Express 22 001906

    [19]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 12066

    [20]

    Wang X, Jiang H T, Yan C, Deng F S, Sun Y, Li Y H, Shi Y L, Chen H 2014 Europhys. Lett. 108 14002

    [21]

    Deng F S, Sun Y, Wang X, Xue R, Li Y, Jiang H T, Shi Y L, Chang K, Chen H 2014 Opt. Express 22 23605

    [22]

    Cao H X, Mei J 2014 Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition Montreal, Quebec, Canada November 14-20, 2014, 37422

    [23]

    Xiao X B, Yang S Y A, Liu Z F, Li H L, Zhou G H 2015 Sci. Rep. 5 7898

    [24]

    Yang D Z, Si M S, Zhang G P, Xue D X 2014 Europhys. Lett. 107 20003

    [25]

    Zhou X F, Dong X, Oganov A R, Zhu Q, Tian Y J, Wang H T 2014 Phys. Rev. Lett. 112 085502

    [26]

    Wang Q, Shen R, Sheng L, Wang B G, Xing D Y 2014 Phys. Rev. A 89 022121

    [27]

    Feng Y, Wang Z J, Chen C Y, Shi Y G, Xie Z J, Yi H M, Liang A J, He S L, He J F, Peng Y Y, Liu X, Liu Y, Zhao L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Dai X, Fang Z, Zhou X J 2014 Sci. Rep. 4 5385

    [28]

    Ortix C, Yang L P, Brink J V D 2012 Phys. Rev. B 86 081405

    [29]

    Banerjee S, Singh R R P, Pardo V, Pickett W E 2009 Phys. Rev. Lett. 103 016402

    [30]

    Zhai F, Wang J 2014 Appl. Phys. Lett. 116 063704

    [31]

    Zhai F, Mu P Y, Chang K 2011 Phys. Rev. B 83 195402

    [32]

    Cheng C, Wu F G, Zhang X, Yao Y W 2014 Acta Phys. Sin. 63 024301(in Chinese) [程聪, 吴福根, 张欣, 姚源卫 2014 63 024301]

    [33]

    Hou L N, Hou Z L, Fu X J 2014 Acta Phys. Sin. 63 034305(in Chinese) [侯丽娜, 侯志林, 傅秀军 2014 63 034305]

    [34]

    Zhang X J, Wu Y 2014 Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition Montreal, Quebec, Canada November 14-20, 2014, 37421

    [35]

    Li Y, Wu Y, Chen C, Mei J 2013 Opt. Express 21 7699

    [36]

    Berry M V 1984 Proc. R. Soc. A 392 45

    [37]

    Kafesaki M, Economou E N 1999 Phys. Rev. B 60 11993

    [38]

    Dresselhaus M S, Dresselhaus G, Jorio A 2008 Group Theory: Application to the Physics of Condensed Matter(Berlin Herdelberg: Springer-Verlag) pp209-235

    [39]

    Wu Y, Li J, Zhang Z Q, Chan C T 2006 Phys. Rev. B 74 085111

    [40]

    Sakurai J J 1994 Modern Quantum Mechanics (Boston: Addsion-Wesley, Reading, MA) pp465-480

    [41]

    Sakoda K 2005 Optical Properties of Photonic crystals (Second Edition) (Berlin Herdelberg: Springer-Verlag) pp94-95

  • [1]

    Castro N A H, Guinea F, PeresN M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [2]

    Rowlands D A, Zhang Y Z 2014 Chin. Phys. B 23 37101

    [3]

    Jung J, Raoux A, Qiao Z H, Mac-Donald A H 2014 Phys. Rev. B 89 205414

    [4]

    Wang X X, Bian G, Wang P, Chiang T C 2015 Phys. Rev. B 91 125103

    [5]

    Zhang Y P, Yin Y H, Lu H H, Zhang H Y 2014 Chin. Phys. B 23 027202

    [6]

    Wen J, Guo H, Yan C H, Wang Z Y, Chang K, Deng P, Zhang T, Zhang Z D, Ji S H, Wang L L, He K, Ma X C, Chen X, Xue Q K 2014 Chin. Phys. Lett. 31 116802

    [7]

    Li W F, Guo M, Zhang G, Zhang Y W 2014 Phys. Rev. B 89 205402

    [8]

    Lin S Y, Chen M, Yang X B, Zhao Y J, Wu S C, Felser C, Ya B H 2015 Phys. Rev. B 91 094107

    [9]

    Zhang D, Lin L Z, Zhu J J 2014 Chin. Phys. Lett. 31 028102

    [10]

    Torrent A, Dehesa J S 2012 Phys. Rev. Lett. 108 174301

    [11]

    Zhang X D, Liu Z Y 2008 Phys. Rev. Lett. 101 264303

    [12]

    Lu J Y, Qiu C Y, Xu S J, Ye Y T, Ke M Z, Liu Z Y 2014 Phys. Rev. B 89 134302

    [13]

    Chen Z G, Ni X, Wu Y, He C, Sun X C, Zheng L Y, Lu M H, Chen Y F 2014 Sci. Rep. 4 4613

    [14]

    Sun L, Gao J, Yang X D 2013 Opt. Express 2121542

    [15]

    Huang X Q, Lai Y, Hang Z H, Zheng H H, Chen C T 2011 Nature Materials 10 1038

    [16]

    Sepkhanov R A, Bazaliy Y B, Beenakker C W J 2007 Phys. Rev. A 75 063813

    [17]

    Mei J, Wu Y, Chan C T, Zhang Z Q 2012 Phys. Rev. B 86 035141

    [18]

    Wu Y 2014 Opt. Express 22 001906

    [19]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 12066

    [20]

    Wang X, Jiang H T, Yan C, Deng F S, Sun Y, Li Y H, Shi Y L, Chen H 2014 Europhys. Lett. 108 14002

    [21]

    Deng F S, Sun Y, Wang X, Xue R, Li Y, Jiang H T, Shi Y L, Chang K, Chen H 2014 Opt. Express 22 23605

    [22]

    Cao H X, Mei J 2014 Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition Montreal, Quebec, Canada November 14-20, 2014, 37422

    [23]

    Xiao X B, Yang S Y A, Liu Z F, Li H L, Zhou G H 2015 Sci. Rep. 5 7898

    [24]

    Yang D Z, Si M S, Zhang G P, Xue D X 2014 Europhys. Lett. 107 20003

    [25]

    Zhou X F, Dong X, Oganov A R, Zhu Q, Tian Y J, Wang H T 2014 Phys. Rev. Lett. 112 085502

    [26]

    Wang Q, Shen R, Sheng L, Wang B G, Xing D Y 2014 Phys. Rev. A 89 022121

    [27]

    Feng Y, Wang Z J, Chen C Y, Shi Y G, Xie Z J, Yi H M, Liang A J, He S L, He J F, Peng Y Y, Liu X, Liu Y, Zhao L, Liu G D, Dong X L, Zhang J, Chen C T, Xu Z Y, Dai X, Fang Z, Zhou X J 2014 Sci. Rep. 4 5385

    [28]

    Ortix C, Yang L P, Brink J V D 2012 Phys. Rev. B 86 081405

    [29]

    Banerjee S, Singh R R P, Pardo V, Pickett W E 2009 Phys. Rev. Lett. 103 016402

    [30]

    Zhai F, Wang J 2014 Appl. Phys. Lett. 116 063704

    [31]

    Zhai F, Mu P Y, Chang K 2011 Phys. Rev. B 83 195402

    [32]

    Cheng C, Wu F G, Zhang X, Yao Y W 2014 Acta Phys. Sin. 63 024301(in Chinese) [程聪, 吴福根, 张欣, 姚源卫 2014 63 024301]

    [33]

    Hou L N, Hou Z L, Fu X J 2014 Acta Phys. Sin. 63 034305(in Chinese) [侯丽娜, 侯志林, 傅秀军 2014 63 034305]

    [34]

    Zhang X J, Wu Y 2014 Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition Montreal, Quebec, Canada November 14-20, 2014, 37421

    [35]

    Li Y, Wu Y, Chen C, Mei J 2013 Opt. Express 21 7699

    [36]

    Berry M V 1984 Proc. R. Soc. A 392 45

    [37]

    Kafesaki M, Economou E N 1999 Phys. Rev. B 60 11993

    [38]

    Dresselhaus M S, Dresselhaus G, Jorio A 2008 Group Theory: Application to the Physics of Condensed Matter(Berlin Herdelberg: Springer-Verlag) pp209-235

    [39]

    Wu Y, Li J, Zhang Z Q, Chan C T 2006 Phys. Rev. B 74 085111

    [40]

    Sakurai J J 1994 Modern Quantum Mechanics (Boston: Addsion-Wesley, Reading, MA) pp465-480

    [41]

    Sakoda K 2005 Optical Properties of Photonic crystals (Second Edition) (Berlin Herdelberg: Springer-Verlag) pp94-95

  • [1] Han Dong-Hai, Zhang Guang-Jun, Zhao Jing-Bo, Yao Hong. Low-frequency bandgaps and sound isolation characteristics of a novel Helmholtz-type phononic crystal. Acta Physica Sinica, 2022, 71(11): 114301. doi: 10.7498/aps.71.20211932
    [2] Gao Hui-Fen, Zhou Xiao-Fang, Huang Xue-Qin. Zak phase induced interface states in two-dimensional phononic crystals. Acta Physica Sinica, 2022, 71(4): 044301. doi: 10.7498/aps.71.20211642
    [3] Zak phase induces interface states in two-dimensional phononic crystals. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211642
    [4] Geng Zhi-Guo, Peng Yu-Gui, Shen Ya-Xi, Zhao De-Gang, Zhu Xue-Feng. Topological acoustic transports in chiral sonic crystals. Acta Physica Sinica, 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [5] Jia Ding, Ge Yong, Yuan Shou-Qi, Sun Hong-Xiang. Dual-band acoustic topological insulator based on honeycomb lattice sonic crystal. Acta Physica Sinica, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [6] Chen Ze-Guo, Wu Ying. Multiple topological phases in phononic crystals. Acta Physica Sinica, 2017, 66(22): 227804. doi: 10.7498/aps.66.227804
    [7] Ye Hong-Jun, Wang Da-Wei, Jiang Zhi-Jun, Cheng Sheng, Wei Xiao-Yong. Ferroelectric phase transition of perovskite SnTiO3 based on the first principles. Acta Physica Sinica, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [8] Gao Han-Feng, Zhang Xin, Wu Fu-Gen, Yao Yuan-Wei. Semi-Dirac cone and singular features of two-dimensional three-component phononic crystals. Acta Physica Sinica, 2016, 65(4): 044301. doi: 10.7498/aps.65.044301
    [9] Li Zhao-Guo, Zhang Shuai, Song Feng-Qi. Universal conductance fluctuations of topological insulators. Acta Physica Sinica, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [10] Fu Zhi-Qiang, Lin Shu-Yu, Chen Shi, Xian Xiao-Jun, Zhang Xiao-Li, Wang Yong. Investigation of one-dimensional finite phononic crystal with exponential section. Acta Physica Sinica, 2012, 61(19): 194301. doi: 10.7498/aps.61.194301
    [11] Chen Sheng-Bing, Han Xiao-Yun, Yu Dian-Long, Wen Ji-Hong. Influences of different types of piezoelectric shunting circuits on band gaps of phononic beam. Acta Physica Sinica, 2010, 59(1): 387-392. doi: 10.7498/aps.59.387
    [12] Li Xiao-Chun, Gao Jun-Li, Liu Shao-E, Zhou Ke-Chao, Huang Bo-Yun. Disorder effect on the focus image of phononic crystal panel with negative refraction. Acta Physica Sinica, 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [13] Gao Guo-Qin, Ma Shou-Lin, Jin Feng, Kim Tong-Beum, Lu Tian-Jian. Acoustic band gaps in finite-sized two-dimensional solid/fluid phononic crystals. Acta Physica Sinica, 2010, 59(1): 393-400. doi: 10.7498/aps.59.393
    [14] Li Xiao-Chun, Gao Jun-Li, Liu Shao-E, Zhou Ke-Chao, Huang Bo-Yun. Scattering channel in focus imaging of two-dimensional phononic crystal panel. Acta Physica Sinica, 2010, 59(1): 381-386. doi: 10.7498/aps.59.381
    [15] Zhao Hong-Gang, Liu Yao-Zong, Wen Ji-Hong, Yu Dian-Long, Wen Xi-Sen. Analysis of the anechoic properties of viscoelastic coatings with periodically distributed cavities. Acta Physica Sinica, 2007, 56(8): 4700-4707. doi: 10.7498/aps.56.4700
    [16] Wang Wen-Gang, Liu Zheng-You, Zhao De-Gang, Ke Man-Zhu. Resonant tunneling of acoustic waves in 1D phononic crystal. Acta Physica Sinica, 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
    [17] Cai Li, Han Xiao-Yun. Study of the band-structure and the uncoupled modes in two-dimensional phononic crystals with the multiple-scattering theory. Acta Physica Sinica, 2006, 55(11): 5866-5871. doi: 10.7498/aps.55.5866
    [18] Li Xiao-Chun, Yi Xiu-Ying, Xiao Qing-Wu, Liang Hong-Yu. Defect states in three-component phononic crystal. Acta Physica Sinica, 2006, 55(5): 2300-2305. doi: 10.7498/aps.55.2300
    [19] Zhao Fang, Yuan Li-Bo. Characteristics of the band structure in two-dimensional phononic crystals with complex lattices. Acta Physica Sinica, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
    [20] Wang Gang, Wen Ji-Hong, Han Xiao-Yun, Zhao Hong-Gang. Finite difference time domain method for the study of band gap in two-dimensiona l phononic crystals. Acta Physica Sinica, 2003, 52(8): 1943-1947. doi: 10.7498/aps.52.1943
Metrics
  • Abstract views:  7606
  • PDF Downloads:  477
  • Cited By: 0
Publishing process
  • Received Date:  19 April 2015
  • Accepted Date:  13 May 2015
  • Published Online:  05 October 2015

/

返回文章
返回
Baidu
map